本文整理汇总了Python中face_recognition.face_locations方法的典型用法代码示例。如果您正苦于以下问题:Python face_recognition.face_locations方法的具体用法?Python face_recognition.face_locations怎么用?Python face_recognition.face_locations使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类face_recognition
的用法示例。
在下文中一共展示了face_recognition.face_locations方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: detect_biggest_face
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def detect_biggest_face(img):
'''
Detect biggest face in image
:param img: cv::mat HxWx3 RGB
:return: 4 <x,y,w,h>
'''
# detect faces
bbs = face_recognition.face_locations(img)
max_area = float('-inf')
max_area_i = 0
for i, (y, right, bottom, x) in enumerate(bbs):
area = (right - x) * (bottom - y)
if max_area < area:
max_area = area
max_area_i = i
if max_area != float('-inf'):
y, right, bottom, x = bbs[max_area_i]
return x, y, (right - x), (bottom - y)
return None
示例2: dlib_face_det
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def dlib_face_det(image):
# Detect and localize faces using dlib (via face_recognition).
# Assumes only one face is in image passed.
# Convert image from BGR (OpenCV ordering) to dlib ordering (RGB).
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Detect the (x, y)-coordinates of the bounding boxes
# corresponding to each face in the input image.
# NB: model='cnn' causes OOM.
boxes = face_recognition.face_locations(rgb,
number_of_times_to_upsample=2, model='hog')
if len(boxes) == 0:
print('*** no face found! ***')
return None
# Return bounding box coords in dlib format.
return boxes
示例3: find_and_save_face
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def find_and_save_face(web_file,face_file):
# Load the jpg file into a numpy array
image = face_recognition.load_image_file(web_file)
print(image.dtype)
# Find all the faces in the image
face_locations = face_recognition.face_locations(image)
print("I found {} face(s) in this photograph.".format(len(face_locations)))
for face_location in face_locations:
# Print the location of each face in this image
top, right, bottom, left = face_location
print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right))
# You can access the actual face itself like this:
face_image = image[top:bottom, left:right]
pil_image = Image.fromarray(face_image)
pil_image.save(face_file)
示例4: upload
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def upload():
print('tracker start')
image_path = request.args.get('path').split(os.sep)[1:]
print(image_path)
image_path = os.sep.join(image_path)
image_dir = os.path.dirname(image_path)
image_name = os.path.basename(image_path)
print(image_path)
image = cv2.imread(image_path)
faces = fr.face_locations(image,
number_of_times_to_upsample=0, model="cnn")
index = 0
for (top, right, bottom, left) in faces:
imgFace = image[top:bottom, left:right]
img_output = cv2.resize(imgFace, (299, 299),
interpolation=cv2.INTER_AREA)
face_path = os.path.join(image_dir, str(index) + image_name)
index += 1
cv2.imwrite(face_path, img_output)
os.remove(image_path)
print('tracker end')
return 'true'
示例5: face_process
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def face_process():
myprint("face process start",time.time())
# Find all the faces and face encodings in the current frame of video
# face_locations = face_recognition.face_locations(rgb_small_frame, model="cnn")
myprint('face_locations start', time.time())
face_locations = face_recognition.face_locations(rgb_small_frame, model="hog")
myprint('face_locations end', time.time())
myprint('face_encodings start', time.time())
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
myprint('face_encodings end', time.time())
face_names = []
for face_encoding in face_encodings:
# optimize start 采用KNN 排名*权重, 在类别上进行叠加,然后排序取出top1
name, dis = vote_class(face_encoding)
# optimize end 采用 排名*权重, 在类别上进行叠加,然后排序取出top1
face_names.append(name) # 将人脸数据
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
myprint('putText start', time.time())
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
myprint("putText end " + name, time.time())
# say hello and save record to file
myprint('process_face_records start', time.time())
process_face_records(name)
myprint('process_face_records end', time.time())
# Display the resulting image
cv2.imshow('Video', frame)
myprint("face process end", time.time())
示例6: __init__
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def __init__(self, path, load_first_face = True):
super().__init__(path)
self.faces = {}
self.coordinates = {} # stores the face (locations center, rotation, length)
self.last_frame = self.get(0)
self.frame_shape = self.last_frame.shape[:2]
self.last_location = (0, 200, 200, 0)
if (load_first_face):
face_positions = face_recognition.face_locations(self.last_frame, number_of_times_to_upsample=2)
if len(face_positions) > 0:
self.last_location = face_positions[0]
示例7: constructIndexes
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def constructIndexes(self, label):
valid_links = []
console.section('Analyzing')
file_name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(6))
file_name += '.jpg'
tmp_path = os.path.join(tempfile.gettempdir(), file_name)
console.task("Storing Image in {0}".format(tmp_path))
for num, i in enumerate(self.profile_img):
console.task('Analyzing {0}...'.format(i.strip()[:90]))
urlretrieve(i, tmp_path)
frame = cv2.imread(tmp_path)
big_frame = cv2.resize(frame, (0, 0), fx=2.0, fy=2.0)
rgb_small_frame = big_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations, num_jitters=self.num_jitters)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(self.known_face_encodings, face_encoding)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = self.known_face_names[first_match_index]
face_names.append(name)
for _, name in zip(face_locations, face_names):
if name == label:
valid_links.append(num)
if os.path.isfile(tmp_path):
console.task("Removing {0}".format(tmp_path))
os.remove(tmp_path)
return valid_links
示例8: detect_faces
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def detect_faces(frame):
face_locations = face_recognition.face_locations(frame)
landmarks = _raw_face_landmarks(frame, face_locations)
for ((y, right, bottom, x), landmarks) in zip(face_locations, landmarks):
yield DetectedFace(frame[y: bottom, x: right], x, right - x, y, bottom - y, landmarks)
# extract all faces in image
示例9: _raw_face_landmarks
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def _raw_face_landmarks(face_image, face_locations):
face_locations = [_css_to_rect(face_location) for face_location in face_locations]
return [pose_predictor(face_image, face_location) for face_location in face_locations]
示例10: reset
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def reset(self):
self.face_relative_locations = []
self.face_locations = []
self.faces = []
示例11: process
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def process(self, frame):
self.reset()
self.cam_h, self.cam_w, _ = frame.shape
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=self.down_scale_factor, fy=self.down_scale_factor)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
self.face_locations = face_recognition.face_locations(rgb_small_frame)
# Display the results
for y1_sm, x2_sm, y2_sm, x1_sm in self.face_locations:
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
x1 = int(x1_sm / self.down_scale_factor)
x2 = int(x2_sm / self.down_scale_factor)
y1 = int(y1_sm / self.down_scale_factor)
y2 = int(y2_sm / self.down_scale_factor)
x1_rltv = x1 / self.cam_w
x2_rltv = x2 / self.cam_w
y1_rltv = y1 / self.cam_h
y2_rltv = y2 / self.cam_h
_face_area = frame[x1:x2, y1:y2, :]
if _face_area.size == 0:
continue
self.faces.append(_face_area)
self.face_relative_locations.append([x1_rltv, y1_rltv, x2_rltv, y2_rltv])
# cv2.imshow('faces', frame[y1:y2, x1:x2, :])
# cv2.waitKey(0)
print('[FaceTracker Server] Found {} faces!'.format(len(self.faces)))
return self.faces
示例12: get_face_and_save
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def get_face_and_save(path):
image_path = f'{IMAGES_PATH}/{path}'
image = face_recognition.load_image_file(image_path)
locations = face_recognition.face_locations(image)
if len(locations) == 1: # save the face of mm
top, right, bottom, left = locations[0]
face_image = image[top:bottom, left:right]
pil_image = Image.fromarray(face_image)
with open(f'{IMAGES_PATH}/faces/face-{path}', "wb") as f:
pil_image.save(f)
return len(locations)
示例13: get_face_and_save
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def get_face_and_save(filename):
img_path = f"{UPLOAD_DIR}/{filename}"
image = face_recognition.load_image_file(img_path)
locations = face_recognition.face_locations(image)
if len(locations) == 1: # save the face of mm
top, right, bottom, left = locations[0]
face_image = image[top:bottom, left:right]
pil_image = Image.fromarray(face_image)
with open(f"{UPLOAD_DIR}/face-{filename}", "wb") as f:
pil_image.save(f)
return len(locations)
示例14: detect_faces
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def detect_faces(img):
'''
Detect faces in image
:param img: cv::mat HxWx3 RGB
:return: yield 4 <x,y,w,h>
'''
# detect faces
bbs = face_recognition.face_locations(img)
for y, right, bottom, x in bbs:
# Scale back up face bb
yield x, y, (right - x), (bottom - y)
示例15: _img_morph
# 需要导入模块: import face_recognition [as 别名]
# 或者: from face_recognition import face_locations [as 别名]
def _img_morph(self, img, expresion):
bbs = face_recognition.face_locations(img)
if len(bbs) > 0:
y, right, bottom, x = bbs[0]
bb = x, y, (right - x), (bottom - y)
face = face_utils.crop_face_with_bb(img, bb)
face = face_utils.resize_face(face)
else:
face = face_utils.resize_face(img)
morphed_face = self._morph_face(face, expresion)
return morphed_face