当前位置: 首页>>代码示例>>Python>>正文


Python evaluator.Evaluator方法代码示例

本文整理汇总了Python中evaluator.Evaluator方法的典型用法代码示例。如果您正苦于以下问题:Python evaluator.Evaluator方法的具体用法?Python evaluator.Evaluator怎么用?Python evaluator.Evaluator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在evaluator的用法示例。


在下文中一共展示了evaluator.Evaluator方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _eval

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def _eval(path_to_checkpoint: str, dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_results_dir: str):
    dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.EVAL, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
    evaluator = Evaluator(dataset, path_to_data_dir, path_to_results_dir)

    Log.i('Found {:d} samples'.format(len(dataset)))

    backbone = BackboneBase.from_name(backbone_name)(pretrained=False)
    model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE,
                  anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
                  rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
    model.load(path_to_checkpoint)

    Log.i('Start evaluating with 1 GPU (1 batch per GPU)')
    mean_ap, detail = evaluator.evaluate(model)
    Log.i('Done')

    Log.i('mean AP = {:.4f}'.format(mean_ap))
    Log.i('\n' + detail) 
开发者ID:potterhsu,项目名称:easy-faster-rcnn.pytorch,代码行数:20,代码来源:eval.py

示例2: _eval

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def _eval(path_to_checkpoint, backbone_name, path_to_results_dir):
    dataset = AVA_video(EvalConfig.VAL_DATA)
    evaluator = Evaluator(dataset, path_to_results_dir)

    Log.i('Found {:d} samples'.format(len(dataset)))

    backbone = BackboneBase.from_name(backbone_name)()
    model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE,
                  anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
                  rpn_pre_nms_top_n=TrainConfig.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=TrainConfig.RPN_POST_NMS_TOP_N).cuda()
    model.load(path_to_checkpoint)
    print("load from:",path_to_checkpoint)
    Log.i('Start evaluating with 1 GPU (1 batch per GPU)')
    mean_ap, detail = evaluator.evaluate(model)
    Log.i('Done')
    Log.i('mean AP = {:.4f}'.format(mean_ap))
    Log.i('\n' + detail) 
开发者ID:MagicChuyi,项目名称:SlowFast-Network-pytorch,代码行数:19,代码来源:eval.py

示例3: test

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def test(cf, logger, max_fold=None):
    """performs testing for a given fold (or held out set). saves stats in evaluator.
    """
    logger.time("test_fold")
    logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir))
    net = model.net(cf, logger).cuda()
    batch_gen = data_loader.get_test_generator(cf, logger)

    test_predictor = Predictor(cf, net, logger, mode='test')
    test_results_list = test_predictor.predict_test_set(batch_gen, return_results = not hasattr(
        cf, "eval_test_separately") or not cf.eval_test_separately)

    if test_results_list is not None:
        test_evaluator = Evaluator(cf, logger, mode='test')
        test_evaluator.evaluate_predictions(test_results_list)
        test_evaluator.score_test_df(max_fold=max_fold)

    logger.info('Testing of fold {} took {}.\n'.format(cf.fold, logger.get_time("test_fold", reset=True, format="hms"))) 
开发者ID:MIC-DKFZ,项目名称:RegRCNN,代码行数:20,代码来源:exec.py

示例4: _eval

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def _eval(path_to_checkpoint: str, dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_results_dir: str):
    dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.EVAL, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
    evaluator = Evaluator(dataset, path_to_data_dir, path_to_results_dir)

    Log.i('Found {:d} samples'.format(len(dataset)))

    backbone = BackboneBase.from_name(backbone_name)(pretrained=False)
    model = Model(backbone, dataset.num_classes(), pooling_mode=Config.POOLING_MODE,
                  anchor_ratios=Config.ANCHOR_RATIOS, anchor_scales=Config.ANCHOR_SCALES,
                  rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
    model.load(path_to_checkpoint)

    mean_ap, detail = evaluator.evaluate(model)

    Log.i('mean AP = {:.4f}'.format(mean_ap))
    Log.i('\n' + detail) 
开发者ID:potterhsu,项目名称:easy-fpn.pytorch,代码行数:18,代码来源:eval.py

示例5: main

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def main():
    print(header)
    stream = open(args.config, 'r')
    default = open('./configs/default.yaml', 'r')
    parameters = load(stream)
    default_parameters = load(default)
    if(args.command == 'train'):
        parameters = merge(default_parameters, parameters)
        print("Training parameters\n-------")
        print_dic(parameters)
        runner = Runner(**parameters)
        runner.run()
    else:
        parameters = merge(merge(default_parameters, parameters), {
            'deterministic_evaluation': args.det,
            'load_dir': args.load_dir
        })
        evaluator = Evaluator(**parameters)
        evaluator.evaluate() 
开发者ID:justinglibert,项目名称:bezos,代码行数:21,代码来源:bezos.py

示例6: _init_eval

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def _init_eval(self):
        logging.info("Init eval")
        x_pre, x, y = [self.g0_inputs[k] for k in ['x_pre', 'x', 'y']]
        self.model.set_device('/gpu:0')
        self.evaluate = Evaluator(self.sess, self.model, self.batch_size,
                                  x_pre, x, y,
                                  self.data,
                                  self.writer,
                                  self.hparams) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:11,代码来源:trainer.py

示例7: test

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def test(logger):
    """
    perform testing for a given fold (or hold out set). save stats in evaluator.
    """
    logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir))
    net = model.net(cf, logger).cuda()
    test_predictor = Predictor(cf, net, logger, mode='test')
    test_evaluator = Evaluator(cf, logger, mode='test')
    batch_gen = data_loader.get_test_generator(cf, logger)
    test_results_list = test_predictor.predict_test_set(batch_gen, return_results=True)
    test_evaluator.evaluate_predictions(test_results_list)
    test_evaluator.score_test_df() 
开发者ID:MIC-DKFZ,项目名称:medicaldetectiontoolkit,代码行数:14,代码来源:exec.py

示例8: test

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def test(opt):
    # Load dataset
    dataset = Dataset(opt.data_dir, opt.train_txt, opt.test_txt, opt.bbox_txt)
    dataset.print_stats()

    # Load image transform
    test_transform = transforms.Compose([
        transforms.Resize((opt.image_width, opt.image_height)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    # Load data loader
    test_loader = mx.gluon.data.DataLoader(
        dataset=ImageData(dataset.test, test_transform),
        batch_size=opt.batch_size,
        num_workers=opt.num_workers
    )

    # Load model
    model = Model(opt)

    # Load evaluator
    evaluator = Evaluator(model, test_loader, opt.ctx)

    # Evaluate
    recalls = evaluator.evaluate(ranks=opt.recallk)
    for recallk, recall in zip(opt.recallk, recalls):
        print("R@{:4d}: {:.4f}".format(recallk, recall)) 
开发者ID:naver,项目名称:cgd,代码行数:31,代码来源:test.py

示例9: _init_eval

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def _init_eval(self):
    logging.info("Init eval")
    x_pre, x, y = [self.g0_inputs[k] for k in ['x_pre', 'x', 'y']]
    self.model.set_device('/gpu:0')
    self.evaluate = Evaluator(self.sess, self.model, self.batch_size,
                              x_pre, x, y,
                              self.data,
                              self.writer,
                              self.hparams) 
开发者ID:tensorflow,项目名称:cleverhans,代码行数:11,代码来源:trainer.py

示例10: learner_init

# 需要导入模块: import evaluator [as 别名]
# 或者: from evaluator import Evaluator [as 别名]
def learner_init(uid, cfg):
    device_count = torch.cuda.device_count()
    device = torch.device('cuda')

    if type(cfg['ratios']) != list:
        ratios = eval(cfg['ratios'], {})
    else:
        ratios = cfg['ratios']
    if type(cfg['scales']) != list:
        scales = cfg['scale_factor'] * np.array(eval(cfg['scales'], {}))
    else:
        scales = cfg['scale_factor'] * np.array(cfg['scales'])

    num_anchors = len(ratios) * len(scales)
    qnet = get_default_net(num_anchors=num_anchors, cfg=cfg)
    qnet = qnet.to(device)
    qnet = torch.nn.DataParallel(qnet)

    qlos = get_default_loss(
        ratios, scales, cfg)
    qlos = qlos.to(device)
    qeval = Evaluator(ratios, scales, cfg)
    # db = get_data(bs=cfg['bs'] * device_count, nw=cfg['nw'], bsv=cfg['bsv'] * device_count,
    #               nwv=cfg['nwv'], devices=cfg['devices'], do_tfms=cfg['do_tfms'],
    #               cfg=cfg, data_cfg=data_cfg)
    # db = get_data(cfg, ds_name=cfg['ds_to_use'])
    db = get_data(cfg)
    opt_fn = partial(torch.optim.Adam, betas=(0.9, 0.99))

    # Note: Currently using default optimizer
    learn = Learner(uid=uid, data=db, mdl=qnet, loss_fn=qlos,
                    opt_fn=opt_fn, eval_fn=qeval, device=device, cfg=cfg)
    return learn 
开发者ID:TheShadow29,项目名称:zsgnet-pytorch,代码行数:35,代码来源:main.py


注:本文中的evaluator.Evaluator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。