本文整理汇总了Python中evaluation.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Python evaluation.evaluate方法的具体用法?Python evaluation.evaluate怎么用?Python evaluation.evaluate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类evaluation
的用法示例。
在下文中一共展示了evaluation.evaluate方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def test(args):
test_set = Dataset.from_bin_file(args.test_file)
assert args.load_model
print('load model from [%s]' % args.load_model, file=sys.stderr)
params = torch.load(args.load_model, map_location=lambda storage, loc: storage)
transition_system = params['transition_system']
saved_args = params['args']
saved_args.cuda = args.cuda
# set the correct domain from saved arg
args.lang = saved_args.lang
parser_cls = Registrable.by_name(args.parser)
parser = parser_cls.load(model_path=args.load_model, cuda=args.cuda)
parser.eval()
evaluator = Registrable.by_name(args.evaluator)(transition_system, args=args)
eval_results, decode_results = evaluation.evaluate(test_set.examples, parser, evaluator, args,
verbose=args.verbose, return_decode_result=True)
print(eval_results, file=sys.stderr)
if args.save_decode_to:
pickle.dump(decode_results, open(args.save_decode_to, 'wb'))
示例2: main
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def main():
flags = parse_flags()
hparams = parse_hparams(flags.hparams)
if flags.mode == 'train':
train.train(model_name=flags.model, hparams=hparams,
class_map_path=flags.class_map_path,
train_csv_path=flags.train_csv_path,
train_clip_dir=flags.train_clip_dir,
train_dir=flags.train_dir)
elif flags.mode == 'eval':
evaluation.evaluate(model_name=flags.model, hparams=hparams,
class_map_path=flags.class_map_path,
eval_csv_path=flags.eval_csv_path,
eval_clip_dir=flags.eval_clip_dir,
checkpoint_path=flags.checkpoint_path)
else:
assert flags.mode == 'inference'
inference.predict(model_name=flags.model, hparams=hparams,
class_map_path=flags.class_map_path,
test_clip_dir=flags.test_clip_dir,
checkpoint_path=flags.checkpoint_path,
predictions_csv_path=flags.predictions_csv_path)
示例3: main
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def main(argv):
hparams = model.parse_hparams(flags.hparams)
if flags.mode == 'train':
def split_csv(scopes):
return scopes.split(',') if scopes else None
train.train(model_name=flags.model, hparams=hparams,
class_map_path=flags.class_map_path,
train_csv_path=flags.train_csv_path,
train_clip_dir=flags.train_clip_dir,
train_dir=flags.train_dir,
epoch_batches=flags.epoch_num_batches,
warmstart_checkpoint=flags.warmstart_checkpoint,
warmstart_include_scopes=split_csv(flags.warmstart_include_scopes),
warmstart_exclude_scopes=split_csv(flags.warmstart_exclude_scopes))
elif flags.mode == 'eval':
evaluation.evaluate(model_name=flags.model, hparams=hparams,
class_map_path=flags.class_map_path,
eval_csv_path=flags.eval_csv_path,
eval_clip_dir=flags.eval_clip_dir,
eval_dir=flags.eval_dir,
train_dir=flags.train_dir)
else:
assert flags.mode == 'inference'
inference.predict(model_name=flags.model, hparams=hparams,
class_map_path=flags.class_map_path,
inference_clip_dir=flags.inference_clip_dir,
inference_checkpoint=flags.inference_checkpoint,
predictions_csv_path=flags.predictions_csv_path)
示例4: main
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def main():
global args
args = parser.parse_args()
if not os.path.exists(args.output_path):
comm = 'python extract_feat.py \
--arch {} \
--batch-size {} \
--input-size {} \
--feature-dim {} \
--load-path {} \
--bin-file {} \
--output-path {}'\
.format(args.arch, args.batch_size, args.input_size, args.feature_dim,
args.load_path, args.bin_file, args.output_path)
print(' '.join(comm.split()))
os.system(comm)
features = np.load(args.output_path).reshape(-1, args.feature_dim)
_, lbs = bin_loader(args.bin_file)
print('feature shape: {}'.format(features.shape))
assert features.shape[0] == 2 * len(lbs), "{} vs {}".format(
features.shape[0], 2 * len(lbs))
features = normalize(features)
_, _, acc, val, val_std, far = evaluate(features,
lbs,
nrof_folds=args.nfolds,
distance_metric=0)
print("accuracy: {:.4f}({:.4f})".format(acc.mean(), acc.std()))
示例5: validate
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def validate(val_loader, model, criterion, epoch, loss_weight, train_len, tb_logger, count):
raise NotImplemented
num_tasks = len(val_loader)
losses = [AverageMeter(args.val.average_stats) for k in range(num_tasks)]
# switch to evaluate mode
model.eval()
start = time.time()
for i, all_in in enumerate(zip(*tuple(val_loader))):
input, target = zip(*[all_in[k] for k in range(num_tasks)])
slice_pt = 0
slice_idx = [0]
for l in [p.size(0) for p in input]:
slice_pt += l
slice_idx.append(slice_pt)
input = torch.cat(tuple(input), dim=0)
target = [tg.cuda() for tg in target]
input_var = torch.autograd.Variable(input.cuda(), volatile=True)
target_var = [torch.autograd.Variable(tg, volatile=True) for tg in target]
# measure accuracy and record loss
loss = model(input_var, target_var, slice_idx)
for k in range(num_tasks):
if torch.__version__ >= '1.1.0':
losses[k].update(loss[k].item())
else:
losses[k].update(loss[k].data[0])
log('Test epoch #{} Time {}'.format(epoch, time.time() - start))
for k in range(num_tasks):
log(' * Task: #{0} Loss {loss.avg:.4f}'.format(k, loss=losses[k]))
for k in range(num_tasks):
tb_logger.add_scalar('val_loss_{}'.format(k), losses[k].val, count[0])
示例6: train
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def train(self,
train_input_fn,
run_eval_after_train=False,
eval_input_fn=None):
"""Run distributed training on Mask RCNN model."""
self._save_config()
run_config = self.build_strategy_configuration()
params = self.build_model_parameters('train', run_config)
tf.logging.info(params)
train_estimator = self.build_mask_rcnn_estimator(params, run_config,
'train')
if self._model_params.use_tpu:
train_estimator.train(
input_fn=train_input_fn, max_steps=self._model_params.total_steps)
else:
# As MirroredStrategy only supports `train_and_evaluate`, for training,
# we pass dummy `eval_spec`.
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn, max_steps=self._model_params.total_steps)
eval_spec = tf.estimator.EvalSpec(input_fn=tf.data.Dataset)
tf.estimator.train_and_evaluate(train_estimator, train_spec, eval_spec)
eval_results = None
if not run_eval_after_train:
return eval_results
if eval_input_fn is None:
raise ValueError('Eval input_fn must be passed to conduct '
'evaluation after training.')
eval_params = self.build_model_parameters('eval', run_config)
eval_estimator = self.build_mask_rcnn_estimator(eval_params, run_config,
'eval')
eval_results, predictions = evaluation.evaluate(
eval_estimator, eval_input_fn, self._model_params.eval_samples,
self._model_params.eval_batch_size, self._model_params.include_mask,
self._model_params.val_json_file)
output_dir = os.path.join(self._flags.model_dir, 'eval')
tf.gfile.MakeDirs(output_dir)
# Summary writer writes out eval metrics.
summary_writer = tf.summary.FileWriter(output_dir)
self._write_summary(summary_writer, eval_results, predictions,
self._model_params.total_steps)
summary_writer.close()
return eval_results
示例7: eval
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def eval(self, eval_input_fn):
"""Run distributed eval on Mask RCNN model."""
output_dir = os.path.join(self._flags.model_dir, 'eval')
tf.gfile.MakeDirs(output_dir)
# Summary writer writes out eval metrics.
summary_writer = tf.summary.FileWriter(output_dir)
run_config = self.build_strategy_configuration()
eval_params = self.build_model_parameters('eval', run_config)
eval_estimator = self.build_mask_rcnn_estimator(eval_params, run_config,
'eval')
def _terminate_eval():
tf.logging.info('Terminating eval after %d seconds of '
'no checkpoints' % self._flags.eval_timeout)
return True
eval_results = None
# Run evaluation when there's a new checkpoint
for ckpt in tf.contrib.training.checkpoints_iterator(
self._flags.model_dir,
min_interval_secs=self._flags.min_eval_interval,
timeout=self._flags.eval_timeout,
timeout_fn=_terminate_eval):
# Terminate eval job when final checkpoint is reached
current_step = int(os.path.basename(ckpt).split('-')[1])
tf.logging.info('Starting to evaluate.')
try:
eval_results, predictions = evaluation.evaluate(
eval_estimator, eval_input_fn, self._model_params.eval_samples,
self._model_params.eval_batch_size, self._model_params.include_mask,
self._model_params.val_json_file)
self._write_summary(summary_writer, eval_results, predictions,
current_step)
if current_step >= self._model_params.total_steps:
tf.logging.info('Evaluation finished after training step %d' %
current_step)
break
except tf.errors.NotFoundError:
# Since the coordinator is on a different job than the TPU worker,
# sometimes the TPU worker does not finish initializing until long after
# the CPU job tells it to start evaluating. In this case, the checkpoint
# file could have been deleted already.
tf.logging.info('Checkpoint %s no longer exists, skipping checkpoint' %
ckpt)
summary_writer.close()
return eval_results
示例8: train_and_eval
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def train_and_eval(self, train_input_fn, eval_input_fn):
"""Run distributed train and eval on Mask RCNN model."""
self._save_config()
output_dir = os.path.join(self._flags.model_dir, 'eval')
tf.gfile.MakeDirs(output_dir)
summary_writer = tf.summary.FileWriter(output_dir)
run_config = self.build_strategy_configuration()
train_params = self.build_model_parameters('train', run_config)
eval_params = self.build_model_parameters('eval', run_config)
train_estimator = self.build_mask_rcnn_estimator(train_params, run_config,
'train')
eval_estimator = self.build_mask_rcnn_estimator(eval_params, run_config,
'eval')
num_cycles = int(self._model_params.total_steps /
self._model_params.num_steps_per_eval)
for cycle in range(num_cycles):
tf.logging.info('Start training cycle %d.' % cycle)
train_estimator.train(
input_fn=train_input_fn, steps=self._model_params.num_steps_per_eval)
tf.logging.info('Start evaluation cycle %d.' % cycle)
eval_results, predictions = evaluation.evaluate(
eval_estimator, eval_input_fn, self._model_params.eval_samples,
self._model_params.eval_batch_size, self._model_params.include_mask,
self._model_params.val_json_file)
current_step = int(cycle * self._model_params.num_steps_per_eval)
self._write_summary(summary_writer, eval_results, predictions,
current_step)
tf.logging.info('Starting training cycle %d.' % num_cycles)
train_estimator.train(
input_fn=train_input_fn, max_steps=self._model_params.total_steps)
eval_results, predictions = evaluation.evaluate(
eval_estimator, eval_input_fn, self._model_params.eval_samples,
self._model_params.eval_batch_size, self._model_params.include_mask,
self._model_params.val_json_file)
self._write_summary(summary_writer, eval_results, predictions,
self._model_params.total_steps)
summary_writer.close()
return eval_results
示例9: evaluation
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import evaluate [as 别名]
def evaluation(test_loader, model, num, outfeat_fn, benchmark):
load_feat = True
if not os.path.isfile(outfeat_fn) or not load_feat:
features = extract(test_loader, model, num, outfeat_fn, silent=True)
else:
print("loading from: {}".format(outfeat_fn))
features = np.fromfile(outfeat_fn, dtype=np.float32).reshape(-1, args.model.feature_dim)
if benchmark == "megaface":
r = test_megaface(features)
log(' * Megaface: 1e-6 [{}], 1e-5 [{}], 1e-4 [{}]'.format(r[-1], r[-2], r[-3]))
return r[-1]
else:
features = normalize(features)
_, lbs = bin_loader("{}/{}.bin".format(args.test.test_root, benchmark))
_, _, acc, val, val_std, far = evaluate(
features, lbs, nrof_folds=args.test.nfolds, distance_metric=0)
log(" * {}: accuracy: {:.4f}({:.4f})".format(benchmark, acc.mean(), acc.std()))
return acc.mean()
#def evaluation_old(test_loader, model, num, outfeat_fn, benchmark):
# load_feat = False
# if not os.path.isfile(outfeat_fn) or not load_feat:
# features = extract(test_loader, model, num, outfeat_fn)
# else:
# log("Loading features: {}".format(outfeat_fn))
# features = np.fromfile(outfeat_fn, dtype=np.float32).reshape(-1, args.model.feature_dim)
#
# if benchmark == "megaface":
# r = test.test_megaface(features)
# log(' * Megaface: 1e-6 [{}], 1e-5 [{}], 1e-4 [{}]'.format(r[-1], r[-2], r[-3]))
# with open(outfeat_fn[:-4] + ".txt", 'w') as f:
# f.write(' * Megaface: 1e-6 [{}], 1e-5 [{}], 1e-4 [{}]'.format(r[-1], r[-2], r[-3]))
# return r[-1]
# elif benchmark == "ijba":
# r = test.test_ijba(features)
# log(' * IJB-A: {} [{}], {} [{}], {} [{}]'.format(r[0][0], r[0][1], r[1][0], r[1][1], r[2][0], r[2][1]))
# with open(outfeat_fn[:-4] + ".txt", 'w') as f:
# f.write(' * IJB-A: {} [{}], {} [{}], {} [{}]'.format(r[0][0], r[0][1], r[1][0], r[1][1], r[2][0], r[2][1]))
# return r[2][1]
# elif benchmark == "lfw":
# r = test.test_lfw(features)
# log(' * LFW: mean: {} std: {}'.format(r[0], r[1]))
# with open(outfeat_fn[:-4] + ".txt", 'w') as f:
# f.write(' * LFW: mean: {} std: {}'.format(r[0], r[1]))
# return r[0]