本文整理汇总了Python中evaluation.Evaluation方法的典型用法代码示例。如果您正苦于以下问题:Python evaluation.Evaluation方法的具体用法?Python evaluation.Evaluation怎么用?Python evaluation.Evaluation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类evaluation
的用法示例。
在下文中一共展示了evaluation.Evaluation方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: report
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def report(e: Evaluation, num_predictions: int, num_answers: int):
i = e.inputs
o = e.outputs
c = e.conversions
m = e.moves
overall = e.overall
print("=================================================")
print("Question Avg. Precision Avg. Recall Avg. F1")
print("-------------------------------------------------")
print("Inputs %4.3f %4.3f %4.3f" % (i.precision, i.recall, i.F1()))
print("Outputs %4.3f %4.3f %4.3f" % (o.precision, o.recall, o.F1()))
print("Conversions %4.3f %4.3f %4.3f" % (c.precision, c.recall, c.F1()))
print("Moves %4.3f %4.3f %4.3f" % (m.precision, m.recall, m.F1()))
print("-------------------------------------------------")
print("Overall Precision %4.3f " % overall.precision)
print("Overall Recall %4.3f " % overall.recall)
print("Overall F1 %4.3f " % overall.F1())
print("=================================================")
print()
print(f"Evaluated {num_predictions} predictions against {num_answers} answers.")
print()
示例2: demo
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def demo(modelfile):
# load network
xEval = Evaluation('all', modelfile)
# load images and run prediction
testfile = os.path.join("../../data/test/", 'test.csv')
xdf = pd.read_csv(testfile)
xdf = xdf.sample(frac=1.0)
for _index, _row in xdf.iterrows():
_image_id = _row['image_id']
_category = _row['image_category']
imageName = os.path.join("../../data/test", _image_id)
print _image_id, _category
dtkp = xEval.predict_kp_with_rotate(imageName, _category)
visualize_keypoint(imageName, _category, dtkp)
示例3: evaluate
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def evaluate(self, data, eval_func):
res = [ ]
for idts, labels in data:
scores = eval_func(idts)
#print scores.shape, len(labels)
#print labels
assert len(scores) == len(labels)
ranks = (-scores).argsort()
ranked_labels = labels[ranks]
res.append(ranked_labels)
e = Evaluation(res)
MAP = e.MAP()*100
MRR = e.MRR()*100
P1 = e.Precision(1)*100
P5 = e.Precision(5)*100
return MAP, MRR, P1, P5
示例4: on_epoch_end
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def on_epoch_end(self, epoch, logs=None):
modelName = os.path.join(self.foldPath, self.category+"_weights_"+str(epoch)+".hdf5")
keras.models.save_model(self.model, modelName)
print "Saving model to ", modelName
print "Runing evaluation ........."
xEval = Evaluation(self.category, None)
xEval.init_from_model(self.model)
start = time()
neScore, categoryDict = xEval.eval(self.multiOut, details=True)
end = time()
print "Evaluation Done", str(neScore), " cost ", end - start, " seconds!"
for key in categoryDict.keys():
scores = categoryDict[key]
print key, ' score ', sum(scores)/len(scores)
with open(self.valLog , 'a+') as xfile:
xfile.write(modelName + ", Socre "+ str(neScore)+"\n")
for key in categoryDict.keys():
scores = categoryDict[key]
xfile.write(key + ": " + str(sum(scores)/len(scores)) + "\n")
xfile.close()
示例5: main_test
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def main_test(savepath, modelpath, augmentFlag):
valfile = os.path.join(modelpath, 'val.log')
bestmodels = get_best_single_model(valfile)
print bestmodels, augmentFlag
xEval = Evaluation('all', bestmodels[0])
# load images and run prediction
testfile = os.path.join("../../data/test/", 'test.csv')
for category in ['skirt', 'blouse', 'trousers', 'outwear', 'dress']:
xdict = dict()
xdf = load_image_names(testfile, category)
print len(xdf), " images to process ", category
count = 0
for _index, _row in xdf.iterrows():
count += 1
if count%1000 == 0:
print count, "images have been processed"
_image_id = _row['image_id']
imageName = os.path.join("../../data/test", _image_id)
if augmentFlag:
dtkp = xEval.predict_kp_with_rotate(imageName, _row['image_category'])
else:
dtkp = xEval.predict_kp(imageName, _row['image_category'], multiOutput=True)
xdict[_image_id] = dtkp
savefile = os.path.join(savepath, category+'.pkl')
with open(savefile, 'wb') as xfile:
pickle.dump(xdict, xfile)
print "prediction save to ", savefile
示例6: evaluate
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def evaluate(self, data, eval_func):
res = [ ]
for idts, idbs, labels in data:
scores = eval_func(idts, idbs)
assert len(scores) == len(labels)
ranks = (-scores).argsort()
ranked_labels = labels[ranks]
res.append(ranked_labels)
e = Evaluation(res)
MAP = e.MAP()*100
MRR = e.MRR()*100
P1 = e.Precision(1)*100
P5 = e.Precision(5)*100
return MAP, MRR, P1, P5
示例7: evaluate
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def evaluate(self, data, eval_func):
res = [ ]
for t, b, labels in data:
idts, idbs = myio.create_one_batch(t, b, self.padding_id)
scores = eval_func(idts)
#assert len(scores) == len(labels)
ranks = (-scores).argsort()
ranked_labels = labels[ranks]
res.append(ranked_labels)
e = Evaluation(res)
MAP = e.MAP()*100
MRR = e.MRR()*100
P1 = e.Precision(1)*100
P5 = e.Precision(5)*100
return MAP, MRR, P1, P5
示例8: main
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def main(argv=None): # pylint: disable=unused-argument
assert args.ckpt > 0 or args.batch_eval
assert args.detect or args.segment, "Either detect or segment should be True"
if args.trunk == 'resnet50':
net = ResNet
depth = 50
if args.trunk == 'resnet101':
net = ResNet
depth = 101
if args.trunk == 'vgg16':
net = VGG
depth = 16
net = net(config=net_config, depth=depth, training=False)
if args.dataset == 'voc07' or args.dataset == 'voc07+12':
loader = VOCLoader('07', 'test')
if args.dataset == 'voc12':
loader = VOCLoader('12', 'val', segmentation=args.segment)
if args.dataset == 'coco':
loader = COCOLoader(args.split)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)) as sess:
detector = Detector(sess, net, loader, net_config, no_gt=args.no_seg_gt)
if args.dataset == 'coco':
tester = COCOEval(detector, loader)
else:
tester = Evaluation(detector, loader, iou_thresh=args.voc_iou_thresh)
if not args.batch_eval:
detector.restore_from_ckpt(args.ckpt)
tester.evaluate_network(args.ckpt)
else:
log.info('Evaluating %s' % args.run_name)
ckpts_folder = CKPT_ROOT + args.run_name + '/'
out_file = ckpts_folder + evaluation_logfile
max_checked = get_last_eval(out_file)
log.debug("Maximum checked ckpt is %i" % max_checked)
with open(out_file, 'a') as f:
start = max(args.min_ckpt, max_checked+1)
ckpt_files = glob(ckpts_folder + '*.data*')
folder_has_nums = np.array(list((map(filename2num, ckpt_files))), dtype='int')
nums_available = sorted(folder_has_nums[folder_has_nums >= start])
nums_to_eval = [nums_available[-1]]
for n in reversed(nums_available):
if nums_to_eval[-1] - n >= args.step:
nums_to_eval.append(n)
nums_to_eval.reverse()
for ckpt in nums_to_eval:
log.info("Evaluation of ckpt %i" % ckpt)
tester.reset()
detector.restore_from_ckpt(ckpt)
res = tester.evaluate_network(ckpt)
f.write(res)
f.flush()
示例9: eval_network
# 需要导入模块: import evaluation [as 别名]
# 或者: from evaluation import Evaluation [as 别名]
def eval_network(sess):
net = Network(num_classes=args.num_classes+args.extend, distillation=False)
_, _, remain = split_classes()
loader = get_loader(False, remain)
is_voc = loader.dataset == 'voc'
if args.eval_ckpts != '':
ckpts = args.eval_ckpts.split(',')
else:
ckpts = [args.ckpt]
global_results = {cat: [] for cat in loader.categories}
global_results[AVERAGE+" 1-10"] = []
global_results[AVERAGE+" 11-20"] = []
global_results[AVERAGE+" ALL"] = []
for ckpt in ckpts:
if ckpt[-1].lower() == 'k':
ckpt_num = int(ckpt[:-1])*1000
else:
ckpt_num = int(ckpt)
init_op, init_feed_dict = restore_ckpt(ckpt_num=ckpt_num)
sess.run(init_op, feed_dict=init_feed_dict)
log.info("Checkpoint {}".format(ckpt))
if is_voc:
results = Evaluation(net, loader, ckpt_num, args.conf_thresh, args.nms_thresh).evaluate_network(args.eval_first_n)
for cat in loader.categories:
global_results[cat].append(results[cat] if cat in results else 0.0)
# TODO add output formating, line after learnt cats
old_classes = [results.get(k, 0) for k in loader.categories[:10]]
new_classes = [results.get(k, 0) for k in loader.categories[10:]]
all_classes = [results.get(k, 0) for k in loader.categories]
global_results[AVERAGE+" 1-10"].append(np.mean(old_classes))
global_results[AVERAGE+" 11-20"].append(np.mean(new_classes))
global_results[AVERAGE+" ALL"].append(np.mean(all_classes))
headers = ['Category'] + [("mAP (%s, %i img)" % (ckpt, args.eval_first_n)) for ckpt in ckpts]
table_src = []
for cat in loader.categories:
table_src.append([cat] + global_results[cat])
table_src.append([AVERAGE+" 1-10", ] + global_results[AVERAGE+" 1-10"])
table_src.append([AVERAGE+" 11-20", ] + global_results[AVERAGE+" 11-20"])
table_src.append([AVERAGE+" ALL", ] + global_results[AVERAGE+" ALL"])
out = tabulate(table_src, headers=headers,
floatfmt=".1f", tablefmt='orgtbl')
with open("/home/lear/kshmelko/scratch/logs/results_voc/%s.pkl" % args.run_name, 'wb') as f:
pickle.dump(global_results, f, pickle.HIGHEST_PROTOCOL)
log.info("Summary table over %i checkpoints\nExperiment: %s\n%s", len(ckpts), args.run_name, out)
else:
results = COCOEval(net, loader, ckpt_num, args.conf_thresh, args.nms_thresh).evaluate_network(args.eval_first_n)