本文整理汇总了Python中eval_util.EvaluationMetrics方法的典型用法代码示例。如果您正苦于以下问题:Python eval_util.EvaluationMetrics方法的具体用法?Python eval_util.EvaluationMetrics怎么用?Python eval_util.EvaluationMetrics使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类eval_util
的用法示例。
在下文中一共展示了eval_util.EvaluationMetrics方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: cal_gap
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def cal_gap(self):
self.predict()
evl_metrics = eval_util.EvaluationMetrics(4716, self.top_k)
predictions_val = ensemble(self.pred_list, self.weights)
print predictions_val.shape
iteration_info_dict = evl_metrics.accumulate(predictions_val,
self.labels_val, np.zeros(predictions_val.shape[0]))
epoch_info_dict = evl_metrics.get()
print(("[email protected]%d:" %self.top_k) + str(epoch_info_dict['gap']))
示例2: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
reader = readers.QuickDrawFeatureReader()
model = find_class_by_name(FLAGS.model,
[models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, 2)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例3: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
reader = readers.CatsVsDogsFeatureReader()
model = find_class_by_name(FLAGS.model,
[cvd_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
image_id_batch = tf.get_collection("id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, 2)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(image_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例4: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
reader = readers.CatsVsDogsFeatureReader()
model = find_class_by_name(FLAGS.model,
[cvd_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
image_id_batch = tf.get_collection("image_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, 2)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(image_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例5: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
reader = readers.MnistReader()
model = find_class_by_name(FLAGS.model,
[mnist_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, 2)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例6: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例7: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
model = find_class_by_name(FLAGS.model,
[labels_autoencoder])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例8: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
distill_names, distill_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.distill_names, FLAGS.distill_sizes)
if FLAGS.frame_features:
reader1 = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader1 = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
reader2 = readers.YT8MAggregatedFeatureReader(
feature_names=distill_names, feature_sizes=distill_sizes)
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader1=reader1,
reader2=reader2,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
distill_data_pattern=FLAGS.distill_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
unused_id_batch = tf.get_collection("unused_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader1.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, unused_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例9: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.distill_data_pattern is not None:
distill_reader = readers.YT8MAggregatedFeatureReader(feature_names=["predictions"],
feature_sizes=[4716])
else:
distill_reader = None
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
transformer_class = find_class_by_name(FLAGS.feature_transformer, [feature_transform])
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
transformer_class=transformer_class,
distill_reader=distill_reader,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例10: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes)
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models,
xp_frame_level_models, xp_video_level_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例11: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names = feature_names,
feature_sizes = feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names = feature_names,
feature_sizes = feature_sizes)
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models,
xp_frame_level_models, xp_video_level_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
if FLAGS.run_once:
break
示例12: evaluate
# 需要导入模块: import eval_util [as 别名]
# 或者: from eval_util import EvaluationMetrics [as 别名]
def evaluate():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
if FLAGS.eval_data_pattern is "":
raise IOError("'eval_data_pattern' was not specified. " +
"Nothing to evaluate.")
build_graph(
reader=reader,
model=model,
eval_data_pattern=FLAGS.eval_data_pattern,
label_loss_fn=label_loss_fn,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_batch = tf.get_collection("video_id_batch")[0]
prediction_batch = tf.get_collection("predictions")[0]
### Newly
# coarse_prediction_batch = tf.get_collection("coarse_predictions")[0]
# coarse_label_batch = tf.get_collection("coarse_labels")[0]
# coarse_loss = tf.get_collection("coarse_loss")[0]
###
label_batch = tf.get_collection("labels")[0]
loss = tf.get_collection("loss")[0]
summary_op = tf.get_collection("summary_op")[0]
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(
FLAGS.train_dir, graph=tf.get_default_graph())
evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k)
last_global_step_val = -1
while True:
last_global_step_val = evaluation_loop(video_id_batch, prediction_batch,
label_batch, loss, summary_op,
saver, summary_writer, evl_metrics,
last_global_step_val)
### Newly
# coarse_prediction_batch, coarse_label_batch, coarse_loss)
###
if FLAGS.run_once:
break