本文整理汇总了Python中environment.Environment方法的典型用法代码示例。如果您正苦于以下问题:Python environment.Environment方法的具体用法?Python environment.Environment怎么用?Python environment.Environment使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类environment
的用法示例。
在下文中一共展示了environment.Environment方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import environment [as 别名]
# 或者: from environment import Environment [as 别名]
def __init__(self, is_running_in_docker, script_dir="demo_scripts", filename="README.md", is_simulation=True, is_automated=False, is_testing=False, is_fast_fail=True,is_learning = False, parent_script_dir = None, is_prep_only = False, is_prerequisite = False, output_format="log"):
"""
is_running_in_docker should be set to true is we are running inside a Docker container
script_dir is the location to look for scripts
filename is the filename of the script this demo represents
is_simulation should be set to true if we want to simulate a human running the commands
is_automated should be set to true if we don't want to wait for an operator to indicate it's time to execute the next command
is_testing is set to true if we want to compare actual results with expected results, by default execution will stop if any test fails (see is_fast_fail)
is_fast_fail should be set to true if we want to contnue running tests even after a failure
is_learning should be set to true if we want a human to type in the commands
parent_script_dir should be the directory of the script that calls this one, or None if this is the root script
is_prep_only should be set to true if we want to stop execution after all prerequisites are satsified
is_prerequisite indicates whether this is a prerequisite or not. It is used to decide behaviour with respect to simulation etc.
"""
self.mode = None
self.is_docker = is_running_in_docker
self.filename = filename
self.script_dir = ""
self.set_script_dir(script_dir)
self.is_simulation = is_simulation
self.is_automated = is_automated
self.is_testing = is_testing
self.is_fast_fail = is_fast_fail
self.is_learning = is_learning
self.current_command = ""
self.current_description = ""
self.last_command = ""
self.is_prep_only = is_prep_only
self.parent_script_dir = parent_script_dir
if self.parent_script_dir:
self.env = Environment(self.parent_script_dir, is_test = self.is_testing)
else:
self.env = Environment(self.script_dir, is_test = self.is_testing)
self.is_prerequisite = is_prerequisite
self.output_format = output_format
self.all_results = []
self.completed_validation_steps = []
示例2: get_bash_script
# 需要导入模块: import environment [as 别名]
# 或者: from environment import Environment [as 别名]
def get_bash_script(script_dir, is_simulation = True, is_automated=False, is_testing=False):
"""
Reads a README.md file in the indicated directoy and builds an
executable bash script from the commands contained within.
"""
if not script_dir.endswith('/'):
script_dir = script_dir + "/"
script = ""
env = Environment(script_dir, False).get()
for key, value in env.items():
script += key + "='" + value + "'\n"
filename = env.get_script_file_name(script_dir)
in_code_block = False
in_results_section = False
lines = list(open(script_dir + filename))
for line in lines:
if line.startswith("Results:"):
# Entering results section
in_results_section = True
elif line.startswith("```") and not in_code_block:
# Entering a code block, if in_results_section = True then it's a results block
in_code_block = True
elif line.startswith("```") and in_code_block:
# Finishing code block
in_results_section = False
in_code_block = False
elif in_code_block and not in_results_section:
# Executable line
script += line
elif line.startswith("#") and not in_code_block and not in_results_section and not is_automated:
# Heading in descriptive text
script += "\n"
return script
示例3: run
# 需要导入模块: import environment [as 别名]
# 或者: from environment import Environment [as 别名]
def run(args):
if args.train_pg:
env_name = args.env_name or 'Pong-v0'
env = Environment(env_name, args)
from agent_dir.agent_pg import Agent_PG
agent = Agent_PG(env, args)
agent.train()
if args.test_pg:
env = Environment('Pong-v0', args, test=True)
from agent_dir.agent_pg import Agent_PG
agent = Agent_PG(env, args)
test(agent, env)
# Experiment on Cartpole only, test unsupported
if args.train_ac:
env_name = args.env_name or 'CartPole-v0'
env = Environment(env_name, args)
from agent_dir.agent_actorcritic import Agent_ActorCritic
agent = Agent_ActorCritic(env, args)
agent.train()
if args.train_pgc:
env_name = args.env_name or 'CartPole-v0'
env = Environment(env_name, args)
from agent_dir.agent_pg_cart import Agent_PGC
agent = Agent_PGC(env, args)
agent.train()
示例4: run
# 需要导入模块: import environment [as 别名]
# 或者: from environment import Environment [as 别名]
def run(args):
if args.test_pg:
env = Environment('Pong-v0', args, test=True)
from agent_dir.agent_pg import Agent_PG
agent = Agent_PG(env, args)
test(agent, env)
示例5: __init__
# 需要导入模块: import environment [as 别名]
# 或者: from environment import Environment [as 别名]
def __init__(self, rl_method='rl', stock_code=None,
chart_data=None, training_data=None,
min_trading_unit=1, max_trading_unit=2,
delayed_reward_threshold=.05,
net='dnn', num_steps=1, lr=0.001,
value_network=None, policy_network=None,
output_path='', reuse_models=True):
# 인자 확인
assert min_trading_unit > 0
assert max_trading_unit > 0
assert max_trading_unit >= min_trading_unit
assert num_steps > 0
assert lr > 0
# 강화학습 기법 설정
self.rl_method = rl_method
# 환경 설정
self.stock_code = stock_code
self.chart_data = chart_data
self.environment = Environment(chart_data)
# 에이전트 설정
self.agent = Agent(self.environment,
min_trading_unit=min_trading_unit,
max_trading_unit=max_trading_unit,
delayed_reward_threshold=delayed_reward_threshold)
# 학습 데이터
self.training_data = training_data
self.sample = None
self.training_data_idx = -1
# 벡터 크기 = 학습 데이터 벡터 크기 + 에이전트 상태 크기
self.num_features = self.agent.STATE_DIM
if self.training_data is not None:
self.num_features += self.training_data.shape[1]
# 신경망 설정
self.net = net
self.num_steps = num_steps
self.lr = lr
self.value_network = value_network
self.policy_network = policy_network
self.reuse_models = reuse_models
# 가시화 모듈
self.visualizer = Visualizer()
# 메모리
self.memory_sample = []
self.memory_action = []
self.memory_reward = []
self.memory_value = []
self.memory_policy = []
self.memory_pv = []
self.memory_num_stocks = []
self.memory_exp_idx = []
self.memory_learning_idx = []
# 에포크 관련 정보
self.loss = 0.
self.itr_cnt = 0
self.exploration_cnt = 0
self.batch_size = 0
self.learning_cnt = 0
# 로그 등 출력 경로
self.output_path = output_path