当前位置: 首页>>代码示例>>Python>>正文


Python blocks.CompositionOperator方法代码示例

本文整理汇总了Python中entropy_coder.lib.blocks.CompositionOperator方法的典型用法代码示例。如果您正苦于以下问题:Python blocks.CompositionOperator方法的具体用法?Python blocks.CompositionOperator怎么用?Python blocks.CompositionOperator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在entropy_coder.lib.blocks的用法示例。


在下文中一共展示了blocks.CompositionOperator方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from entropy_coder.lib import blocks [as 别名]
# 或者: from entropy_coder.lib.blocks import CompositionOperator [as 别名]
def __init__(self, code_depth, name=None):
    super(BrnnPredictor, self).__init__(name)

    with self._BlockScope():
      hidden_depth = 2 * code_depth

      # What is coming from the previous layer/iteration
      # is going through a regular Conv2D layer as opposed to the binary codes
      # of the current layer/iteration which are going through a masked
      # convolution.
      self._adaptation0 = blocks.RasterScanConv2D(
          hidden_depth, [7, 7], [1, 1], 'SAME',
          strict_order=True,
          bias=blocks.Bias(0), act=tf.tanh)
      self._adaptation1 = blocks.Conv2D(
          hidden_depth, [3, 3], [1, 1], 'SAME',
          bias=blocks.Bias(0), act=tf.tanh)
      self._predictor = blocks.CompositionOperator([
          blocks.LineOperator(
              blocks.RasterScanConv2DLSTM(
                  depth=hidden_depth,
                  filter_size=[1, 3],
                  hidden_filter_size=[1, 3],
                  strides=[1, 1],
                  padding='SAME')),
          blocks.Conv2D(hidden_depth, [1, 1], [1, 1], 'SAME',
                        bias=blocks.Bias(0), act=tf.tanh),
          blocks.Conv2D(code_depth, [1, 1], [1, 1], 'SAME',
                        bias=blocks.Bias(0), act=tf.tanh)
      ]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:32,代码来源:progressive.py


注:本文中的entropy_coder.lib.blocks.CompositionOperator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。