本文整理汇总了Python中dynet.esum方法的典型用法代码示例。如果您正苦于以下问题:Python dynet.esum方法的具体用法?Python dynet.esum怎么用?Python dynet.esum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dynet
的用法示例。
在下文中一共展示了dynet.esum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _attend
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def _attend(self, input_vectors, decoder):
w1 = self.att_w1.expr(update=True)
w2 = self.att_w2.expr(update=True)
v = self.att_v.expr(update=True)
attention_weights = []
w2dt = w2 * decoder.s()[-1]
for input_vector in input_vectors:
attention_weight = v * dy.tanh(w1 * input_vector + w2dt)
attention_weights.append(attention_weight)
attention_weights = dy.softmax(dy.concatenate(attention_weights))
output_vectors = dy.esum(
[vector * attention_weight for vector, attention_weight in zip(input_vectors, attention_weights)])
return output_vectors, attention_weights
示例2: _make_input
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def _make_input(self, seq):
x_list = [self.phone_lookup[self.encodings.char2int['START']]]
for pi in seq:
if pi.char not in self.encodings.char2int:
print("Unknown input: '" + pi.char + "'")
else:
char_emb = self.phone_lookup[self.encodings.char2int[pi.char]]
context = []
for feature in pi.context:
if feature in self.encodings.context2int:
context.append(self.feature_lookup[self.encodings.context2int[feature]])
if len(context) == 0:
x_list.append(char_emb)
else:
x_list.append(char_emb + dy.esum(context) * dy.scalarInput(1.0 / len(context)))
x_list.append(self.phone_lookup[self.encodings.char2int['STOP']])
return x_list
示例3: __getitem__
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def __getitem__(self, i):
"""
Return the weighted layers for the current word.
:param i: Word at index i in the sentence.
:return: Embedding for the word
"""
layers = self._get_sentence_layers(i)
normalized_weights = dy.softmax(self.elmo.weights)
y_hat = [
dy.inputTensor(layer) * weight
for layer, weight in zip(layers, normalized_weights)
]
# Sum the layer contents together
return dy.esum(y_hat) * self.elmo.gamma
示例4: _doc_loss
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def _doc_loss(self, doc, y):
y_node = self.prop_encoder_.transform(y.nodes)
y_link = self.link_encoder_.transform(y.links)
props, links, _, _, _, _ = self.build_cg(doc)
obj_prop = [dy.hinge(prop, y_) for prop, y_ in zip(props, y_node)]
obj_link = [dy.hinge(link, y_) for link, y_ in zip(links, y_link)]
obj = dy.esum(obj_prop) + dy.esum(obj_link)
correct = sum(1 for val in obj_prop + obj_link
if val.scalar_value() == 0)
max_acc = len(obj_prop + obj_link)
return obj, max_acc - correct, max_acc, 'n/a'
示例5: loss
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def loss(self, sentence, word_chars, tags_set):
'''
For use in training phase.
Tag sentence (all attributes) and compute loss based on probability of expected tags.
'''
observations_set = self.build_tagging_graph(sentence, word_chars)
errors = {}
for att, tags in tags_set.items():
err = []
for obs, tag in zip(observations_set[att], tags):
err_t = dy.pickneglogsoftmax(obs, tag)
err.append(err_t)
errors[att] = dy.esum(err)
if self.att_props is not None:
for att, err in errors.items():
prop_vec = dy.inputVector([self.att_props[att]] * err.dim()[0])
err = dy.cmult(err, prop_vec)
return errors
示例6: evaluate
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def evaluate(self, inputs, outputs):
params = M.get_collection()
optimizer = dy.SimpleSGDTrainer(params, self.learning_rate)
num_batches = int(len(self.train_dataset) / self.batch_size)
for epoch in range(self.max_num_training_epochs):
random.shuffle(self.train_dataset)
i = 0
total_loss = 0
while (i < len(self.train_dataset)):
dy.renew_cg()
mbsize = min(self.batch_size, len(self.train_dataset) - i)
minibatch = self.train_dataset[i:i + mbsize]
losses = []
for (label, img) in minibatch:
x = dy.inputVector(img)
co.forward({inputs['in']: x})
logits = outputs['out'].val
loss = dy.pickneglogsoftmax(logits, label)
losses.append(loss)
mbloss = dy.esum(losses) / mbsize
mbloss.backward()
optimizer.update()
total_loss += mbloss.scalar_value()
i += mbsize
val_acc = self.compute_accuracy(inputs, outputs)
if self.log_output_to_terminal and epoch % self.display_step == 0:
print("epoch:", '%d' % (epoch + 1), "loss:",
"{:.9f}".format(total_loss / num_batches),
"validation_accuracy:", "%.5f" % val_acc)
val_acc = self.compute_accuracy(inputs, outputs)
return {'val_acc': val_acc}
示例7: train_epoch
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def train_epoch(self, batch_size):
batches = list(self.batch(self.train_data, batch_size))
for batch in tqdm(batches, unit="batch-" + str(batch_size)):
dy.renew_cg()
error = dy.esum([dy.average(list(self.model.forward(_in, _out))) for _in, _out in batch])
self.losses.append(float(error.value()) / len(batch))
error.backward()
self.trainer.update()
time.sleep(0.01)
return sum(self.losses[-1 * len(batches):]) / len(batches)
示例8: train_step
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def train_step(model, batch, lr_coeff, dropout):
dy.renew_cg()
losses = []
assert not model.prev_decoder_snippet_rep
num_tokens = 0
for item in batch.items:
loss = model.prepare_and_predict(item,
use_gold=True,
training=True,
dropout=dropout)
num_tokens += len(item.gold_query())
losses.append(loss)
final_loss = dy.esum(losses) / num_tokens
final_loss.forward()
final_loss.backward()
model.trainer.learning_rate = lr_coeff
model.trainer.update()
return final_loss.npvalue()[0]
# eval_step
# Runs an evaluation on the example.
#
# Inputs:
# example: an Utterance.
# use_gold: whether or not to pass gold tokens into the decoder.
#
# Outputs:
# information provided by prepare and predict
示例9: encode_ws
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def encode_ws(self, X, train=False):
dy.renew_cg()
# Remove dy.parameters(...) for DyNet v.2.1
#w_ws = dy.parameter(self.w_ws)
#b_ws = dy.parameter(self.b_ws)
w_ws = self.w_ws
b_ws = self.b_ws
ipts = []
length = len(X[0])
for i in range(length):
uni = X[0][i]
bi = X[1][i]
ctype = X[2][i]
start = X[3][i]
end = X[4][i]
vec_uni = dy.concatenate([self.UNI[uid] for uid in uni])
vec_bi = dy.concatenate([self.BI[bid] for bid in bi])
vec_start = dy.esum([self.WORD[sid] for sid in start])
vec_end = dy.esum([self.WORD[eid] for eid in end])
vec_ctype = dy.concatenate([self.CTYPE[cid] for cid in ctype])
vec_at_i = dy.concatenate([vec_uni, vec_bi, vec_ctype, vec_start, vec_end])
if train is True:
vec_at_i = dy.dropout(vec_at_i, self.dropout_rate)
ipts.append(vec_at_i)
bilstm_outputs = self.ws_model.transduce(ipts)
observations = [w_ws*h+b_ws for h in bilstm_outputs]
return observations
示例10: encode_pt
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def encode_pt(self, X, train=False):
dy.renew_cg()
# Remove dy.parameters(...) for DyNet v.2.1
#w_pos = dy.parameter(self.w_pos)
#b_pos = dy.parameter(self.b_pos)
w_pos = self.w_pos
b_pos = self.b_pos
ipts = []
length = len(X[0])
for i in range(length):
cids = X[0][i]
wid = X[1][i]
tids = X[2][i]
vec_char = self.char_seq_model.transduce([self.UNI[cid] for cid in cids])[-1]
vec_tags = []
for tid in tids:
if tid == 0:
zero = dy.inputVector(np.zeros(self.dim_tag_emb))
vec_tags.append(zero)
else:
vec_tags.append(self.POS[tid])
vec_tag = dy.esum(vec_tags)
if wid == 0:
vec_word = dy.inputVector(np.zeros(self.dim_word))
else:
vec_word = self.WORD[wid]
vec_at_i = dy.concatenate([vec_word, vec_char, vec_tag])
if train is True:
vec_at_i = dy.dropout(vec_at_i, self.dropout_rate)
ipts.append(vec_at_i)
hiddens = self.pos_model.transduce(ipts)
probs = [dy.softmax(w_pos*h+b_pos) for h in hiddens]
return probs
示例11: get_POStagging_loss
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def get_POStagging_loss(self, X, Y):
losses = []
probs = self.encode_pt(X, train=True)
for prob, y in zip(probs, Y):
losses.append(-dy.log(dy.pick(prob, y)))
loss = dy.esum(losses)
return loss
示例12: end_batch
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def end_batch(self):
total_loss = 0
if len(self.losses) != 0:
loss = dy.esum(self.losses)
self.losses = []
total_loss = loss.value()
loss.backward()
self.trainer.update()
return total_loss
示例13: learn
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def learn(self, characters, target_mgc, guided_att=True):
num_mgc = target_mgc.shape[0]
# print num_mgc
dy.renew_cg()
for pi in characters:
if pi.char not in self.encodings.char2int:
print("Unknown input: '" + pi.char + "' - skipping file")
return 0
style_probs = self.compute_gold_style_probs(target_mgc)
output_mgc, output_stop, output_attention = self._predict(characters, target_mgc, style_probs=style_probs)
losses = []
index = 0
for mgc, real_mgc in zip(output_mgc, target_mgc):
t_mgc = dy.inputVector(real_mgc)
# losses.append(self._compute_binary_divergence(mgc, t_mgc) )
losses.append(dy.l1_distance(mgc, t_mgc))
if index % 3 == 0:
# attention loss
if guided_att:
att = output_attention[index // 3]
losses.append(self._compute_guided_attention(att, index // 3, len(characters) + 2, num_mgc // 3))
# EOS loss
stop = output_stop[index // 3]
if index >= num_mgc - 6:
losses.append(dy.l1_distance(stop, dy.scalarInput(-0.8)))
else:
losses.append(dy.l1_distance(stop, dy.scalarInput(0.8)))
index += 1
loss = dy.esum(losses)
loss_val = loss.value() / num_mgc
loss.backward()
self.trainer.update()
return loss_val
示例14: _attend
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def _attend(self, input_list, decoder_state, last_pos=None):
w1 = self.att_w1.expr(update=True)
w2 = self.att_w2.expr(update=True)
v = self.att_v.expr(update=True)
attention_weights = []
w2dt = w2 * dy.concatenate([decoder_state.s()[-1]])
for input_vector in input_list:
attention_weight = v * dy.tanh(w1 * input_vector + w2dt)
attention_weights.append(attention_weight)
attention_weights = dy.softmax(dy.concatenate(attention_weights))
# force incremental attention if this is runtime
if last_pos is not None:
current_pos = np.argmax(attention_weights.value())
if current_pos < last_pos or current_pos >= last_pos + 2:
current_pos = last_pos + 1
if current_pos >= len(input_list):
current_pos = len(input_list) - 1
output_vectors = input_list[current_pos]
simulated_att = np.zeros((len(input_list)))
simulated_att[current_pos] = 1.0
new_att_vec = dy.inputVector(simulated_att)
return output_vectors, new_att_vec
output_vectors = dy.esum(
[vector * attention_weight for vector, attention_weight in zip(input_list, attention_weights)])
return output_vectors, attention_weights
示例15: train_step
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import esum [as 别名]
def train_step(self, batch):
"""Training step for a batch of examples.
Input:
batch (list of examples): Batch of examples used to update.
"""
dy.renew_cg(autobatching=True)
losses = []
total_gold_tokens = 0
batch.start()
while not batch.done():
example = batch.next()
# First, encode the input sequences.
input_sequences = example.histories(
self.params.maximum_utterances - 1) + [example.input_sequence()]
final_state, utterance_hidden_states = self._encode_input_sequences(
input_sequences)
# Add positional embeddings if appropriate
if self.params.state_positional_embeddings:
utterance_hidden_states = self._add_positional_embeddings(
utterance_hidden_states, input_sequences)
# Encode the snippets
snippets = []
if self.params.use_snippets:
snippets = self._encode_snippets(example.previous_query(), snippets)
# Decode
flat_seq = []
for sequence in input_sequences:
flat_seq.extend(sequence)
decoder_results = self.decoder(
final_state,
utterance_hidden_states,
self.params.train_maximum_sql_length,
snippets=snippets,
gold_sequence=example.gold_query(),
dropout_amount=self.dropout,
input_sequence=flat_seq)
all_scores = [
step.scores for step in decoder_results.predictions]
all_alignments = [
step.aligned_tokens for step in decoder_results.predictions]
loss = du.compute_loss(example.gold_query(),
all_scores,
all_alignments,
get_token_indices)
losses.append(loss)
total_gold_tokens += len(example.gold_query())
average_loss = dy.esum(losses) / total_gold_tokens
average_loss.forward()
average_loss.backward()
self.trainer.update()
loss_scalar = average_loss.value()
return loss_scalar