本文整理汇总了Python中dynet.LSTMBuilder方法的典型用法代码示例。如果您正苦于以下问题:Python dynet.LSTMBuilder方法的具体用法?Python dynet.LSTMBuilder怎么用?Python dynet.LSTMBuilder使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dynet
的用法示例。
在下文中一共展示了dynet.LSTMBuilder方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: initParams
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import LSTMBuilder [as 别名]
def initParams(self,model,Cemb,options):
# initialize the model parameters
params = dict()
params['embed'] = model.add_lookup_parameters(Cemb.shape)
for row_num,vec in enumerate(Cemb):
params['embed'].init_row(row_num, vec)
params['lstm'] = dy.LSTMBuilder(1,options['word_dims'],options['nhiddens'],model)
params['reset_gate_W'] = []
params['reset_gate_b'] = []
params['com_W'] = []
params['com_b'] = []
params['word_score_U'] = model.add_parameters(options['word_dims'])
params['predict_W'] = model.add_parameters((options['word_dims'],options['nhiddens']))
params['predict_b'] = model.add_parameters(options['word_dims'])
for wlen in xrange(1,options['max_word_len']+1):
params['reset_gate_W'].append(model.add_parameters((wlen*options['char_dims'],wlen*options['char_dims'])))
params['reset_gate_b'].append(model.add_parameters(wlen*options['char_dims']))
params['com_W'].append(model.add_parameters((options['word_dims'],wlen*options['char_dims'])))
params['com_b'].append(model.add_parameters(options['word_dims']))
params['<BoS>'] = model.add_parameters(options['word_dims'])
return params
示例2: __init__
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import LSTMBuilder [as 别名]
def __init__(self, c2i, num_lstm_layers=DEFAULT_LSTM_LAYERS,\
char_dim=DEFAULT_CHAR_DIM, hidden_dim=DEFAULT_HIDDEN_DIM,\
word_embedding_dim=DEFAULT_WORD_DIM, file=None):
self.c2i = c2i
self.model = dy.Model()
# Char LSTM Parameters
self.char_lookup = self.model.add_lookup_parameters((len(c2i), char_dim), name="ce")
self.char_fwd_lstm = dy.LSTMBuilder(num_lstm_layers, char_dim, hidden_dim, self.model)
self.char_bwd_lstm = dy.LSTMBuilder(num_lstm_layers, char_dim, hidden_dim, self.model)
# Post-LSTM Parameters
self.lstm_to_rep_params = self.model.add_parameters((word_embedding_dim, hidden_dim * 2), name="H")
self.lstm_to_rep_bias = self.model.add_parameters(word_embedding_dim, name="Hb")
self.mlp_out = self.model.add_parameters((word_embedding_dim, word_embedding_dim), name="O")
self.mlp_out_bias = self.model.add_parameters(word_embedding_dim, name="Ob")
if file is not None:
# read from saved file; see old_load() for dynet 1.0 format
### NOTE - dynet 2.0 only supports explicit loading into params, so
### dimensionalities all need to be specified in init
self.model.populate(file)
示例3: init_params
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import LSTMBuilder [as 别名]
def init_params(self):
super().init_params()
self.entity_encoder = self.pc.add_parameters((self.embedding_size, self.embedding_size * 3)) # e N e
self.relation_encoder = self.pc.add_parameters((self.embedding_size, self.embedding_size * 3)) # N e N
self.no_ent = self.pc.add_parameters(self.embedding_size)
self.vocab.create_lookup(self.pc, self.embedding_size)
self.counters.create_lookup(self.pc, self.counter_size)
self.decoder = dy.LSTMBuilder(3, self.embedding_size + self.counter_size * 4, self.embedding_size, self.pc)
示例4: __init__
# 需要导入模块: import dynet [as 别名]
# 或者: from dynet import LSTMBuilder [as 别名]
def __init__(self, tagset_sizes, num_lstm_layers, hidden_dim, word_embeddings, no_we_update, use_char_rnn, charset_size, char_embedding_dim, att_props=None, vocab_size=None, word_embedding_dim=None):
'''
:param tagset_sizes: dictionary of attribute_name:number_of_possible_tags
:param num_lstm_layers: number of desired LSTM layers
:param hidden_dim: size of hidden dimension (same for all LSTM layers, including character-level)
:param word_embeddings: pre-trained list of embeddings, assumes order by word ID (optional)
:param no_we_update: if toggled, don't update embeddings
:param use_char_rnn: use "char->tag" option, i.e. concatenate character-level LSTM outputs to word representations (and train underlying LSTM). Only 1-layer is supported.
:param charset_size: number of characters expected in dataset (needed for character embedding initialization)
:param char_embedding_dim: desired character embedding dimension
:param att_props: proportion of loss to assign each attribute for back-propagation weighting (optional)
:param vocab_size: number of words in model (ignored if pre-trained embeddings are given)
:param word_embedding_dim: desired word embedding dimension (ignored if pre-trained embeddings are given)
'''
self.model = dy.Model()
self.tagset_sizes = tagset_sizes
self.attributes = list(tagset_sizes.keys())
self.we_update = not no_we_update
if att_props is not None:
self.att_props = defaultdict(float, {att:(1.0-p) for att,p in att_props.items()})
else:
self.att_props = None
if word_embeddings is not None: # Use pretrained embeddings
vocab_size = word_embeddings.shape[0]
word_embedding_dim = word_embeddings.shape[1]
self.words_lookup = self.model.add_lookup_parameters((vocab_size, word_embedding_dim), name="we")
if word_embeddings is not None:
self.words_lookup.init_from_array(word_embeddings)
# Char LSTM Parameters
self.use_char_rnn = use_char_rnn
self.char_hidden_dim = hidden_dim
if use_char_rnn:
self.char_lookup = self.model.add_lookup_parameters((charset_size, char_embedding_dim), name="ce")
self.char_bi_lstm = dy.BiRNNBuilder(1, char_embedding_dim, hidden_dim, self.model, dy.LSTMBuilder)
# Word LSTM parameters
if use_char_rnn:
input_dim = word_embedding_dim + hidden_dim
else:
input_dim = word_embedding_dim
self.word_bi_lstm = dy.BiRNNBuilder(num_lstm_layers, input_dim, hidden_dim, self.model, dy.LSTMBuilder)
# Matrix that maps from Bi-LSTM output to num tags
self.lstm_to_tags_params = {}
self.lstm_to_tags_bias = {}
self.mlp_out = {}
self.mlp_out_bias = {}
for att, set_size in list(tagset_sizes.items()):
self.lstm_to_tags_params[att] = self.model.add_parameters((set_size, hidden_dim), name=att+"H")
self.lstm_to_tags_bias[att] = self.model.add_parameters(set_size, name=att+"Hb")
self.mlp_out[att] = self.model.add_parameters((set_size, set_size), name=att+"O")
self.mlp_out_bias[att] = self.model.add_parameters(set_size, name=att+"Ob")