当前位置: 首页>>代码示例>>Python>>正文


Python network_units.embedding_lookup方法代码示例

本文整理汇总了Python中dragnn.python.network_units.embedding_lookup方法的典型用法代码示例。如果您正苦于以下问题:Python network_units.embedding_lookup方法的具体用法?Python network_units.embedding_lookup怎么用?Python network_units.embedding_lookup使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dragnn.python.network_units的用法示例。


在下文中一共展示了network_units.embedding_lookup方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fetch_differentiable_fixed_embeddings

# 需要导入模块: from dragnn.python import network_units [as 别名]
# 或者: from dragnn.python.network_units import embedding_lookup [as 别名]
def fetch_differentiable_fixed_embeddings(comp, state, stride):
  """Looks up fixed features with separate, differentiable, embedding lookup.

  Args:
    comp: Component whose fixed features we wish to look up.
    state: live MasterState object for the component.
    stride: Tensor containing current batch * beam size.

  Returns:
    state handle: updated state handle to be used after this call
    fixed_embeddings: list of NamedTensor objects
  """
  _validate_embedded_fixed_features(comp)
  num_channels = len(comp.spec.fixed_feature)
  if not num_channels:
    return state.handle, []

  state.handle, indices, ids, weights, num_steps = (
      dragnn_ops.bulk_fixed_features(
          state.handle, component=comp.name, num_channels=num_channels))
  fixed_embeddings = []
  for channel, feature_spec in enumerate(comp.spec.fixed_feature):
    differentiable_or_constant = ('constant' if feature_spec.is_constant else
                                  'differentiable')
    tf.logging.info('[%s] Adding %s fixed feature "%s"', comp.name,
                    differentiable_or_constant, feature_spec.name)
    size = stride * num_steps * feature_spec.size
    fixed_embedding = network_units.embedding_lookup(
        comp.get_variable(network_units.fixed_embeddings_name(channel)),
        indices[channel], ids[channel], weights[channel], size)
    if feature_spec.is_constant:
      fixed_embedding = tf.stop_gradient(fixed_embedding)
    fixed_embeddings.append(
        network_units.NamedTensor(fixed_embedding, feature_spec.name))

  return state.handle, fixed_embeddings 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:38,代码来源:bulk_component.py

示例2: fetch_differentiable_fixed_embeddings

# 需要导入模块: from dragnn.python import network_units [as 别名]
# 或者: from dragnn.python.network_units import embedding_lookup [as 别名]
def fetch_differentiable_fixed_embeddings(comp, state, stride, during_training):
  """Looks up fixed features with separate, differentiable, embedding lookup.

  Args:
    comp: Component whose fixed features we wish to look up.
    state: live MasterState object for the component.
    stride: Tensor containing current batch * beam size.
    during_training: True if this is being called from a training code path.
      This controls, e.g., the use of feature ID dropout.

  Returns:
    state handle: updated state handle to be used after this call
    fixed_embeddings: list of NamedTensor objects
  """
  _validate_embedded_fixed_features(comp)
  num_channels = len(comp.spec.fixed_feature)
  if not num_channels:
    return state.handle, []

  state.handle, indices, ids, weights, num_steps = (
      dragnn_ops.bulk_fixed_features(
          state.handle, component=comp.name, num_channels=num_channels))
  fixed_embeddings = []
  for channel, feature_spec in enumerate(comp.spec.fixed_feature):
    differentiable_or_constant = ('constant' if feature_spec.is_constant else
                                  'differentiable')
    tf.logging.info('[%s] Adding %s fixed feature "%s"', comp.name,
                    differentiable_or_constant, feature_spec.name)

    if during_training and feature_spec.dropout_id >= 0:
      ids[channel], weights[channel] = network_units.apply_feature_id_dropout(
          ids[channel], weights[channel], feature_spec)

    size = stride * num_steps * feature_spec.size
    fixed_embedding = network_units.embedding_lookup(
        comp.get_variable(network_units.fixed_embeddings_name(channel)),
        indices[channel], ids[channel], weights[channel], size)
    if feature_spec.is_constant:
      fixed_embedding = tf.stop_gradient(fixed_embedding)
    fixed_embeddings.append(
        network_units.NamedTensor(fixed_embedding, feature_spec.name))

  return state.handle, fixed_embeddings 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:45,代码来源:bulk_component.py


注:本文中的dragnn.python.network_units.embedding_lookup方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。