本文整理汇总了Python中dragnn.python.dragnn_ops.emit_annotations方法的典型用法代码示例。如果您正苦于以下问题:Python dragnn_ops.emit_annotations方法的具体用法?Python dragnn_ops.emit_annotations怎么用?Python dragnn_ops.emit_annotations使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dragnn.python.dragnn_ops
的用法示例。
在下文中一共展示了dragnn_ops.emit_annotations方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: add_annotation
# 需要导入模块: from dragnn.python import dragnn_ops [as 别名]
# 或者: from dragnn.python.dragnn_ops import emit_annotations [as 别名]
def add_annotation(self, name_scope='annotation', enable_tracing=False):
"""Adds an annotation pipeline to the graph.
This will create the following additional named targets by default, for use
in C++ annotation code (as well as regular ComputeSession targets):
annotation/ComputeSession/session_id (placeholder for giving unique id)
annotation/EmitAnnotations (get annotated data)
annotation/GetComponentTrace (get trace data)
annotation/SetTracing (sets tracing based on annotation/tracing_on)
Args:
name_scope: Scope for the annotation pipeline.
enable_tracing: Enabling this will result in two things:
1. Tracing will be enabled during inference.
2. A 'traces' node will be added to the outputs.
Returns:
A dictionary of input and output nodes.
"""
with tf.name_scope(name_scope):
handle, input_batch = self._get_session_with_reader(enable_tracing)
handle = self.build_inference(handle, use_moving_average=True)
annotations = dragnn_ops.emit_annotations(
handle, component=self.spec.component[-1].name)
outputs = {'annotations': annotations}
if enable_tracing:
outputs['traces'] = dragnn_ops.get_component_trace(
handle, component=self.spec.component[-1].name)
return self._outputs_with_release(handle, {'input_batch': input_batch},
outputs)
示例2: add_annotation
# 需要导入模块: from dragnn.python import dragnn_ops [as 别名]
# 或者: from dragnn.python.dragnn_ops import emit_annotations [as 别名]
def add_annotation(self,
name_scope='annotation',
enable_tracing=False,
build_runtime_graph=False):
"""Adds an annotation pipeline to the graph.
This will create the following additional named targets by default, for use
in C++ annotation code (as well as regular ComputeSession targets):
annotation/ComputeSession/session_id (placeholder for giving unique id)
annotation/EmitAnnotations (get annotated data)
annotation/GetComponentTrace (get trace data)
annotation/SetTracing (sets tracing based on annotation/tracing_on)
Args:
name_scope: Scope for the annotation pipeline.
enable_tracing: Enabling this will result in two things:
1. Tracing will be enabled during inference.
2. A 'traces' node will be added to the outputs.
build_runtime_graph: Whether to build a graph for use by the runtime.
Returns:
A dictionary of input and output nodes.
"""
with tf.name_scope(name_scope):
handle, input_batch = self._get_session_with_reader(enable_tracing)
handle = self.build_inference(
handle,
use_moving_average=True,
build_runtime_graph=build_runtime_graph)
annotations = dragnn_ops.emit_annotations(
handle, component=self.spec.component[-1].name)
outputs = {'annotations': annotations}
if enable_tracing:
outputs['traces'] = dragnn_ops.get_component_trace(
handle, component=self.spec.component[-1].name)
return self._outputs_with_release(handle, {'input_batch': input_batch},
outputs)