当前位置: 首页>>代码示例>>Python>>正文


Python dragnn_ops.bulk_advance_from_oracle方法代码示例

本文整理汇总了Python中dragnn.python.dragnn_ops.bulk_advance_from_oracle方法的典型用法代码示例。如果您正苦于以下问题:Python dragnn_ops.bulk_advance_from_oracle方法的具体用法?Python dragnn_ops.bulk_advance_from_oracle怎么用?Python dragnn_ops.bulk_advance_from_oracle使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dragnn.python.dragnn_ops的用法示例。


在下文中一共展示了dragnn_ops.bulk_advance_from_oracle方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_greedy_training

# 需要导入模块: from dragnn.python import dragnn_ops [as 别名]
# 或者: from dragnn.python.dragnn_ops import bulk_advance_from_oracle [as 别名]
def build_greedy_training(self, state, network_states):
    """Advances a batch using oracle paths, returning the overall CE cost.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
          underlying master to this component.
      network_states: dictionary of component NetworkState objects

    Returns:
      (state handle, cost, correct, total): TF ops corresponding to the final
          state after unrolling, the total cost, the total number of correctly
          predicted actions, and the total number of actions.

    Raises:
      RuntimeError: if fixed features are configured.
    """
    logging.info('Building component: %s', self.spec.name)
    if self.spec.fixed_feature:
      raise RuntimeError(
          'Fixed features are not compatible with bulk annotation. '
          'Use the "bulk-features" component instead.')
    linked_embeddings = [
        fetch_linked_embedding(self, network_states, spec)
        for spec in self.spec.linked_feature
    ]

    stride = state.current_batch_size * self.training_beam_size
    with tf.variable_scope(self.name, reuse=True):
      network_tensors = self.network.create([], linked_embeddings, None, None,
                                            True, stride)

    update_network_states(self, network_tensors, network_states, stride)

    logits = self.network.get_logits(network_tensors)
    state.handle, gold = dragnn_ops.bulk_advance_from_oracle(
        state.handle, component=self.name)

    cost, correct, total = build_cross_entropy_loss(logits, gold)
    cost = self.add_regularizer(cost)

    return state.handle, cost, correct, total 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:43,代码来源:bulk_component.py

示例2: build_greedy_training

# 需要导入模块: from dragnn.python import dragnn_ops [as 别名]
# 或者: from dragnn.python.dragnn_ops import bulk_advance_from_oracle [as 别名]
def build_greedy_training(self, state, network_states):
    """Advances a batch using oracle paths, returning the overall CE cost.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
          underlying master to this component.
      network_states: dictionary of component NetworkState objects

    Returns:
      (state handle, cost, correct, total): TF ops corresponding to the final
          state after unrolling, the total cost, the total number of correctly
          predicted actions, and the total number of actions.

    Raises:
      RuntimeError: if fixed features are configured.
    """
    logging.info('Building component: %s', self.spec.name)
    if self.spec.fixed_feature:
      raise RuntimeError(
          'Fixed features are not compatible with bulk annotation. '
          'Use the "bulk-features" component instead.')
    linked_embeddings = [
        fetch_linked_embedding(self, network_states, spec)
        for spec in self.spec.linked_feature
    ]

    stride = state.current_batch_size * self.training_beam_size
    self.network.pre_create(stride)
    with tf.variable_scope(self.name, reuse=True):
      network_tensors = self.network.create([], linked_embeddings, None, None,
                                            True, stride)

    update_network_states(self, network_tensors, network_states, stride)

    state.handle, gold = dragnn_ops.bulk_advance_from_oracle(
        state.handle, component=self.name)
    cost, correct, total = self.network.compute_bulk_loss(
        stride, network_tensors, gold)
    if cost is None:
      # The network does not have a custom bulk loss; default to softmax.
      logits = self.network.get_logits(network_tensors)
      cost, correct, total = build_cross_entropy_loss(logits, gold)
    cost = self.add_regularizer(cost)

    return state.handle, cost, correct, total 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:47,代码来源:bulk_component.py


注:本文中的dragnn.python.dragnn_ops.bulk_advance_from_oracle方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。