本文整理汇总了Python中dragnn.protos.spec_pb2.ComponentSpec方法的典型用法代码示例。如果您正苦于以下问题:Python spec_pb2.ComponentSpec方法的具体用法?Python spec_pb2.ComponentSpec怎么用?Python spec_pb2.ComponentSpec使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dragnn.protos.spec_pb2
的用法示例。
在下文中一共展示了spec_pb2.ComponentSpec方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: default_source_layer
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def default_source_layer(self):
"""Returns the default source_layer setting for this ComponentSpec.
Usually links are intended for a specific layer in the network unit.
For common network units, this returns the hidden layer intended
to be read by recurrent and cross-component connections.
Returns:
String name of default network layer.
Raises:
ValueError: if no default is known for the given setup.
"""
for network, default_layer in [('FeedForwardNetwork', 'layer_0'),
('LayerNormBasicLSTMNetwork', 'state_h_0'),
('LSTMNetwork', 'layer_0'),
('IdentityNetwork', 'input_embeddings')]:
if self.spec.network_unit.registered_name.endswith(network):
return default_layer
raise ValueError('No default source for network unit: %s' %
self.spec.network_unit)
示例2: _component_contents
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def _component_contents(component):
"""Generates the label on component boxes.
Args:
component: spec_pb2.ComponentSpec proto
Returns:
String label
"""
return """<
<B>{name}</B><BR />
{transition_name}<BR />
{network_name}<BR />
{num_actions_str}<BR />
hidden: {num_hidden}
>""".format(
name=component.name,
transition_name=component.transition_system.registered_name,
network_name=component.network_unit.registered_name,
num_actions_str="{} action{}".format(component.num_actions, "s" if
component.num_actions != 1 else ""),
num_hidden=component.network_unit.parameters.get("hidden_layer_sizes",
"not specified"))
示例3: testFailsOnFixedFeature
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def testFailsOnFixedFeature(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "annotate"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed" embedding_dim: 32 size: 1
}
""", component_spec)
with tf.Graph().as_default():
comp = bulk_component.BulkAnnotatorComponentBuilder(
self.master, component_spec)
# Expect feature extraction to generate a runtime error due to the
# fixed feature.
with self.assertRaises(RuntimeError):
comp.build_greedy_training(self.master_state, self.network_states)
示例4: testBulkFeatureIdExtractorOkWithOneFixedFeature
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def testBulkFeatureIdExtractorOkWithOneFixedFeature(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed" embedding_dim: -1 size: 1
}
""", component_spec)
with tf.Graph().as_default():
comp = bulk_component.BulkFeatureIdExtractorComponentBuilder(
self.master, component_spec)
# Should not raise errors.
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_training(self.master_state, self.network_states)
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_inference(self.master_state, self.network_states)
示例5: __init__
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def __init__(self):
self.spec = spec_pb2.MasterSpec()
self.hyperparams = spec_pb2.GridPoint()
self.lookup_component = {
'previous': MockComponent(self, spec_pb2.ComponentSpec())
}
示例6: __init__
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def __init__(self,
name,
builder='DynamicComponentBuilder',
backend='SyntaxNetComponent'):
"""Initializes the ComponentSpec with some defaults for SyntaxNet.
Args:
name: The name of this Component in the pipeline.
builder: The component builder type.
backend: The component backend type.
"""
self.spec = spec_pb2.ComponentSpec(
name=name,
backend=self.make_module(backend),
component_builder=self.make_module(builder))
示例7: testFailsOnNonIdentityTranslator
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def testFailsOnNonIdentityTranslator(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
linked_feature {
name: "features" embedding_dim: -1 size: 1
source_translator: "history"
source_component: "mock"
}
""", component_spec)
# For feature extraction:
with tf.Graph().as_default():
comp = bulk_component.BulkFeatureExtractorComponentBuilder(
self.master, component_spec)
# Expect feature extraction to generate a error due to the "history"
# translator.
with self.assertRaises(NotImplementedError):
comp.build_greedy_training(self.master_state, self.network_states)
# As well as annotation:
with tf.Graph().as_default():
comp = bulk_component.BulkAnnotatorComponentBuilder(
self.master, component_spec)
with self.assertRaises(NotImplementedError):
comp.build_greedy_training(self.master_state, self.network_states)
示例8: testConstantFixedFeatureFailsIfNotPretrained
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def testConstantFixedFeatureFailsIfNotPretrained(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed" embedding_dim: 32 size: 1
is_constant: true
}
component_builder {
registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
}
""", component_spec)
with tf.Graph().as_default():
comp = bulk_component.BulkFeatureExtractorComponentBuilder(
self.master, component_spec)
with self.assertRaisesRegexp(ValueError,
'Constant embeddings must be pretrained'):
comp.build_greedy_training(self.master_state, self.network_states)
with self.assertRaisesRegexp(ValueError,
'Constant embeddings must be pretrained'):
comp.build_greedy_inference(
self.master_state, self.network_states, during_training=True)
with self.assertRaisesRegexp(ValueError,
'Constant embeddings must be pretrained'):
comp.build_greedy_inference(
self.master_state, self.network_states, during_training=False)
示例9: testNormalFixedFeaturesAreDifferentiable
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def testNormalFixedFeaturesAreDifferentiable(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed" embedding_dim: 32 size: 1
pretrained_embedding_matrix { part {} }
vocab { part {} }
}
component_builder {
registered_name: "bulk_component.BulkFeatureExtractorComponentBuilder"
}
""", component_spec)
with tf.Graph().as_default():
comp = bulk_component.BulkFeatureExtractorComponentBuilder(
self.master, component_spec)
# Get embedding matrix variables.
with tf.variable_scope(comp.name, reuse=True):
fixed_embedding_matrix = tf.get_variable(
network_units.fixed_embeddings_name(0))
# Get output layer.
comp.build_greedy_training(self.master_state, self.network_states)
activations = self.network_states[comp.name].activations
outputs = activations[comp.network.layers[0].name].bulk_tensor
# Compute the gradient of the output layer w.r.t. the embedding matrix.
# This should be well-defined for in the normal case.
gradients = tf.gradients(outputs, fixed_embedding_matrix)
self.assertEqual(len(gradients), 1)
self.assertFalse(gradients[0] is None)
示例10: testBulkFeatureIdExtractorOkWithMultipleFixedFeatures
# 需要导入模块: from dragnn.protos import spec_pb2 [as 别名]
# 或者: from dragnn.protos.spec_pb2 import ComponentSpec [as 别名]
def testBulkFeatureIdExtractorOkWithMultipleFixedFeatures(self):
component_spec = spec_pb2.ComponentSpec()
text_format.Parse("""
name: "test"
network_unit {
registered_name: "IdentityNetwork"
}
fixed_feature {
name: "fixed1" embedding_dim: -1 size: 1
}
fixed_feature {
name: "fixed2" embedding_dim: -1 size: 1
}
fixed_feature {
name: "fixed3" embedding_dim: -1 size: 1
}
""", component_spec)
with tf.Graph().as_default():
comp = bulk_component.BulkFeatureIdExtractorComponentBuilder(
self.master, component_spec)
# Should not raise errors.
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_training(self.master_state, self.network_states)
self.network_states[component_spec.name] = component.NetworkState()
comp.build_greedy_inference(self.master_state, self.network_states)