本文整理汇总了Python中dlib.shape_predictor方法的典型用法代码示例。如果您正苦于以下问题:Python dlib.shape_predictor方法的具体用法?Python dlib.shape_predictor怎么用?Python dlib.shape_predictor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dlib
的用法示例。
在下文中一共展示了dlib.shape_predictor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def test(image_path, model_path):
'''Test the given model by showing the detected landmarks.
- image_path: the path of an image. Should contain a face.
- model_path: the path of a shape predictor model.
'''
image = cv2.imread(image_path)
face_detector = dlib.get_frontal_face_detector()
dets = face_detector(image, 1)
predictor = dlib.shape_predictor(model_path)
for d in dets:
cv2.rectangle(image, (d.left(), d.top()), (d.right(), d.bottom()), 255, 1)
shape = predictor(image, d)
for i in range(shape.num_parts):
p = shape.part(i)
cv2.circle(image, (p.x, p.y), 2, 255, 1)
cv2.putText(image, str(i), (p.x + 4, p.y), cv2.FONT_HERSHEY_SIMPLEX, 0.25, (255, 255, 255))
cv2.imshow("window", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# uncomment to test
# test("test_image.jpg", "shape_predictor.dat")
示例2: __init__
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def __init__(self, usage):
self.usage = usage
if self.usage == 'train':
print('loading train samples')
self.image_folder = image_folder
if os.path.isfile('data/train_triplets.json'):
with open('data/train_triplets.json', 'r') as file:
self.samples = json.load(file)
else:
self.samples = get_random_triplets('train')
else:
print('loading valid samples(LFW)')
self.image_folder = lfw_folder
with open('data/lfw_val_triplets.json', 'r') as file:
self.samples = json.load(file)
self.detector = dlib.get_frontal_face_detector()
self.sp = dlib.shape_predictor(predictor_path)
示例3: predict
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def predict(image, model, shape_predictor=None):
# get landmarks
if NETWORK.use_landmarks or NETWORK.use_hog_and_landmarks or NETWORK.use_hog_sliding_window_and_landmarks:
face_rects = [dlib.rectangle(left=0, top=0, right=NETWORK.input_size, bottom=NETWORK.input_size)]
face_landmarks = np.array([get_landmarks(image, face_rects, shape_predictor)])
features = face_landmarks
if NETWORK.use_hog_sliding_window_and_landmarks:
hog_features = sliding_hog_windows(image)
hog_features = np.asarray(hog_features)
face_landmarks = face_landmarks.flatten()
features = np.concatenate((face_landmarks, hog_features))
else:
hog_features, _ = hog(image, orientations=8, pixels_per_cell=(16, 16),
cells_per_block=(1, 1), visualise=True)
hog_features = np.asarray(hog_features)
face_landmarks = face_landmarks.flatten()
features = np.concatenate((face_landmarks, hog_features))
tensor_image = image.reshape([-1, NETWORK.input_size, NETWORK.input_size, 1])
predicted_label = model.predict([tensor_image, features.reshape((1, -1))])
return get_emotion(predicted_label[0])
else:
tensor_image = image.reshape([-1, NETWORK.input_size, NETWORK.input_size, 1])
predicted_label = model.predict(tensor_image)
return get_emotion(predicted_label[0])
return None
示例4: _setup_predictor
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def _setup_predictor(self, predictor_path):
if not os.path.exists(predictor_path):
# Download predictor file
url = FaceDetector.predictor_url
bz2_path = os.path.basename(url)
logger.info('Download to "%s"', bz2_path)
urllib.request.urlretrieve(url, bz2_path)
logger.info('Expand to "%s"', predictor_path)
data = bz2.BZ2File(bz2_path).read()
open(predictor_path, 'wb').write(data)
logger.info('Remove temporary file ("%s")', bz2_path)
os.remove(bz2_path)
# Deserialize
predictor = dlib.shape_predictor(predictor_path)
return predictor
示例5: detect_fiducial_points
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def detect_fiducial_points(img, predictor_path):
"""
Detect face landmarks and return the mean points of left and right eyes.
If there are multiple faces in one image, only select the first one.
"""
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
dets = detector(img, 1)
if len(dets) < 1:
return []
for k, d in enumerate(dets):
shape = predictor(img, d)
break
landmarks = []
for i in range(68):
landmarks.append([shape.part(i).x, shape.part(i).y])
landmarks = np.array(landmarks)
left_eye = landmarks[36:42]
right_eye = landmarks[42:48]
mouth = landmarks[48:68]
return np.array([np.mean(left_eye, 0), np.mean(right_eye, 0)]).astype('int')
示例6: startCapture
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def startCapture(self):
self.setText("请稍候,正在初始化数据和摄像头。。。")
try:
# 检测相关
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(
"Data/shape_predictor_68_face_landmarks.dat")
cascade_fn = "Data/lbpcascades/lbpcascade_frontalface.xml"
self.cascade = cv2.CascadeClassifier(cascade_fn)
if not self.cascade:
return QMessageBox.critical(self, "错误", cascade_fn + " 无法找到")
self.cap = cv2.VideoCapture(0)
if not self.cap or not self.cap.isOpened():
return QMessageBox.critical(self, "错误", "打开摄像头失败")
# 开启定时器定时捕获
self.timer = QTimer(self, timeout=self.onCapture)
self.timer.start(1000 / self.fps)
except Exception as e:
QMessageBox.critical(self, "错误", str(e))
示例7: __init__
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def __init__(self, specific_model):
super(FaceDetectorSSD, self).__init__()
self.specific_model = specific_model
graph_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
DeepFaceConfs.get()['detector'][self.specific_model]['frozen_graph']
)
self.detector = self._load_graph(graph_path)
self.tensor_image = self.detector.get_tensor_by_name('prefix/image_tensor:0')
self.tensor_boxes = self.detector.get_tensor_by_name('prefix/detection_boxes:0')
self.tensor_score = self.detector.get_tensor_by_name('prefix/detection_scores:0')
self.tensor_class = self.detector.get_tensor_by_name('prefix/detection_classes:0')
predictor_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
DeepFaceConfs.get()['detector']['dlib']['landmark_detector']
)
self.predictor = dlib.shape_predictor(predictor_path)
config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
self.session = tf.Session(graph=self.detector, config=config)
示例8: get_landmarks
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def get_landmarks(img, resource_dir, verbose=False):
# if not automatically downloaded, get it from:
# http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
predictor_path = resource_dir + "/dlib_models/shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
lmarks = []
dets = detector(img, 1)
if verbose:
print("Number of faces detected: {}".format(len(dets)))
shapes = []
for k, det in enumerate(dets):
shape = predictor(img, det)
shapes.append(shape)
xy = _shape_to_np(shape)
lmarks.append(xy)
lmarks = np.asarray(lmarks, dtype='float32')
# display_landmarks(img, dets, shapes)
return lmarks
示例9: __init__
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
#pylint: disable=no-member
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
示例10: __init__
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)
示例11: __init__
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def __init__(self, MDE: MainData):
self.md = MDE
self.detector = dlib.get_frontal_face_detector()
self.sp = dlib.shape_predictor("shape_predictor_5_face_landmarks.dat")
示例12: predictor
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def predictor(self):
"""
预测我们的面部方向
:return:
"""
return shape_predictor('shape_predictor_68_face_landmarks.dat')
开发者ID:tomoncle,项目名称:face-detection-induction-course,代码行数:8,代码来源:input_static_pic_to_gif2_for_class.py
示例13: __init__
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def __init__(self, saved=False):
self.saved = saved # 是否保存图片
self.listener = True # 启动参数
self.video_capture = cv2.VideoCapture(0) # 调用本地摄像头
self.doing = False # 是否进行面部面具
self.speed = 0.1 # 面具移动速度
self.detector = get_frontal_face_detector() # 面部识别器
self.predictor = shape_predictor("shape_predictor_68_face_landmarks.dat") # 面部分析器
self.fps = 4 # 面具存在时间基础时间
self.animation_time = 0 # 动画周期初始值
self.duration = self.fps * 4 # 动画周期最大值
self.fixed_time = 4 # 画图之后,停留时间
self.max_width = 500 # 图像大小
self.deal, self.text, self.cigarette = None, None, None # 面具对象
示例14: _getSharedLandmarker
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def _getSharedLandmarker():
global _landmarker
if _landmarker is None:
_landmarker = dlib.shape_predictor(_face_landmarks_path)
return _landmarker
示例15: __init__
# 需要导入模块: import dlib [as 别名]
# 或者: from dlib import shape_predictor [as 别名]
def __init__(self, facePredictor):
"""
Instantiate an 'AlignDlib' object.
:param facePredictor: The path to dlib's
:type facePredictor: str
"""
assert facePredictor is not None
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(facePredictor)