本文整理汇总了Python中django.db.models.StdDev方法的典型用法代码示例。如果您正苦于以下问题:Python models.StdDev方法的具体用法?Python models.StdDev怎么用?Python models.StdDev使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类django.db.models
的用法示例。
在下文中一共展示了models.StdDev方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: handle
# 需要导入模块: from django.db import models [as 别名]
# 或者: from django.db.models import StdDev [as 别名]
def handle(self, *args, **options):
cutoff_date = datetime.date.today() - datetime.timedelta(days=(30 * MONTHS))
counts = User.objects.filter(date_joined__gt=cutoff_date)
counts = counts.annotate(follow_count=Count('following')).order_by('follow_count')
avg = counts.aggregate(Avg('follow_count'))['follow_count__avg']
print
print 'Following counts for users who signed up in the last {} months'.format(MONTHS)
print '----------------'
print 'Average: {:.3} per user'.format(avg)
try:
std_dev = counts.aggregate(StdDev('follow_count'))['follow_count__stddev']
print 'StdDev: {:.3}'.format(std_dev)
except DatabaseError:
print "(can't get standard deviation with SQLite)"
counts = counts.values_list('follow_count', flat=True)
print 'Median: {}'.format(percentile(counts, 0.5))
print
示例2: all_aggregations
# 需要导入模块: from django.db import models [as 别名]
# 或者: from django.db.models import StdDev [as 别名]
def all_aggregations(queryset, key):
""" Performs all available aggregations on a queryset """
return queryset.filter(**{key + '__isnull': False}).aggregate(
min=Min(key),
avg=Avg(key),
max=Max(key),
std=StdDev(key),
count=Count(key),
sum=Sum(key),
)
示例3: fetch_and_calculate
# 需要导入模块: from django.db import models [as 别名]
# 或者: from django.db.models import StdDev [as 别名]
def fetch_and_calculate(self, with_arr = False):
## REQUIRES PSQL SETTINGS TO HAVE MORE MEMORY
# sudo nano /etc/postgresql/9.3/main/postgresql.conf
# shared_buffers = 2GB
# work_mem = 100MB
# temp_buffers = 500MB
# sudo /etc/init.d/postgresql restart
ds_with_key = {}
if with_arr:
ds = list(Distance.objects.filter(structure__in=self.structures).exclude(gns_pair__contains='8x').exclude(gns_pair__contains='12x').exclude(gns_pair__contains='23x').exclude(gns_pair__contains='34x').exclude(gns_pair__contains='45x') \
.values('gns_pair') \
.annotate(mean = Avg('distance'), std = StdDev('distance'), c = Count('distance'), dis = Count('distance'),arr=ArrayAgg('distance'),arr2=ArrayAgg('structure__pdb_code__index'),arr3=ArrayAgg('gns_pair')).values_list('gns_pair','mean','std','c','dis','arr','arr2','arr3').filter(c__gte=int(0.8*len(self.structures))))
for i,d in enumerate(ds):
ds[i] = list(ds[i])
ds[i][3] = d[2]/d[1]
ds_with_key[d[0]] = ds[i]
else:
ds = list(Distance.objects.filter(structure__in=self.structures).exclude(gns_pair__contains='8x').exclude(gns_pair__contains='12x').exclude(gns_pair__contains='23x').exclude(gns_pair__contains='34x').exclude(gns_pair__contains='45x') \
.values('gns_pair') \
.annotate(mean = Avg('distance'), std = StdDev('distance'), c = Count('distance')).values_list('gns_pair','mean','std','c').filter(c__gte=int(len(self.structures)*0.8)))
for i,d in enumerate(ds):
ds[i] += (d[2]/d[1],)
ds_with_key[d[0]] = ds[i]
# # print(ds.query)
# print(ds[1])
# Assume that dispersion is always 4
if len(self.structures)>1:
stats_sorted = sorted(ds, key=lambda k: -k[3])
else:
stats_sorted = sorted(ds, key=lambda k: -k[1])
#print(ds[1])
self.stats_key = ds_with_key
self.stats = stats_sorted
示例4: test_aggregation
# 需要导入模块: from django.db import models [as 别名]
# 或者: from django.db.models import StdDev [as 别名]
def test_aggregation(self):
"""
#19360: Raise NotImplementedError when aggregating on date/time fields.
"""
for aggregate in (Sum, Avg, Variance, StdDev):
with self.assertRaises(NotImplementedError):
Item.objects.all().aggregate(aggregate('time'))
with self.assertRaises(NotImplementedError):
Item.objects.all().aggregate(aggregate('date'))
with self.assertRaises(NotImplementedError):
Item.objects.all().aggregate(aggregate('last_modified'))
with self.assertRaises(NotImplementedError):
Item.objects.all().aggregate(
**{'complex': aggregate('last_modified') + aggregate('last_modified')}
)
示例5: test_aggregation
# 需要导入模块: from django.db import models [as 别名]
# 或者: from django.db.models import StdDev [as 别名]
def test_aggregation(self):
"""
Raise NotImplementedError when aggregating on date/time fields (#19360).
"""
for aggregate in (Sum, Avg, Variance, StdDev):
with self.assertRaises(NotSupportedError):
Item.objects.all().aggregate(aggregate('time'))
with self.assertRaises(NotSupportedError):
Item.objects.all().aggregate(aggregate('date'))
with self.assertRaises(NotSupportedError):
Item.objects.all().aggregate(aggregate('last_modified'))
with self.assertRaises(NotSupportedError):
Item.objects.all().aggregate(
**{'complex': aggregate('last_modified') + aggregate('last_modified')}
)
示例6: drop_report
# 需要导入模块: from django.db import models [as 别名]
# 或者: from django.db.models import StdDev [as 别名]
def drop_report(qs, **kwargs):
report_data = {}
# Get querysets for each possible drop type
drops = get_drop_querysets(qs)
report_data['summary'] = get_report_summary(drops, qs.count(), **kwargs)
# Clear time statistics, if supported by the qs model
if hasattr(qs.model, 'clear_time'):
successful_runs = qs.filter(
Q(success=True) | Q(level__dungeon__category=Dungeon.CATEGORY_RIFT_OF_WORLDS_BEASTS)
)
if successful_runs.count():
clear_time_aggs = successful_runs.aggregate(
std_dev=StdDev(Extract(F('clear_time'), lookup_name='epoch')),
avg=Avg('clear_time'),
min=Min('clear_time'),
max=Max('clear_time'),
)
# Use +/- 3 std deviations of clear time avg as bounds for time range in case of extreme outliers skewing chart scale
min_time = round_timedelta(
max(clear_time_aggs['min'], clear_time_aggs['avg'] - timedelta(seconds=clear_time_aggs['std_dev'] * 3)),
CLEAR_TIME_BIN_WIDTH,
direction='down',
)
max_time = round_timedelta(
min(clear_time_aggs['max'], clear_time_aggs['avg'] + timedelta(seconds=clear_time_aggs['std_dev'] * 3)),
CLEAR_TIME_BIN_WIDTH,
direction='up',
)
bins = [min_time + CLEAR_TIME_BIN_WIDTH * x for x in range(0, int((max_time - min_time) / CLEAR_TIME_BIN_WIDTH))]
# Histogram generates on entire qs, not just successful runs.
report_data['clear_time'] = {
'min': str(clear_time_aggs['min']),
'max': str(clear_time_aggs['max']),
'avg': str(clear_time_aggs['avg']),
'chart': {
'type': 'histogram',
'width': 5,
'data': histogram(qs, 'clear_time', bins, slice_on='success'),
}
}
# Individual drop details
for key, qs in drops.items():
if DROP_TYPES[key]:
report_data[key] = DROP_TYPES[key](qs, qs.count(), **kwargs)
return report_data