本文整理汇总了Python中distutils.extension.Extension方法的典型用法代码示例。如果您正苦于以下问题:Python extension.Extension方法的具体用法?Python extension.Extension怎么用?Python extension.Extension使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类distutils.extension
的用法示例。
在下文中一共展示了extension.Extension方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_get_outputs
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def test_get_outputs(self):
pkg_dir, dist = self.create_dist()
cmd = install_lib(dist)
# setting up a dist environment
cmd.compile = cmd.optimize = 1
cmd.install_dir = pkg_dir
f = os.path.join(pkg_dir, 'foo.py')
self.write_file(f, '# python file')
cmd.distribution.py_modules = [pkg_dir]
cmd.distribution.ext_modules = [Extension('foo', ['xxx'])]
cmd.distribution.packages = [pkg_dir]
cmd.distribution.script_name = 'setup.py'
# get_output should return 4 elements
self.assertGreaterEqual(len(cmd.get_outputs()), 2)
示例2: test_get_inputs
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def test_get_inputs(self):
pkg_dir, dist = self.create_dist()
cmd = install_lib(dist)
# setting up a dist environment
cmd.compile = cmd.optimize = 1
cmd.install_dir = pkg_dir
f = os.path.join(pkg_dir, 'foo.py')
self.write_file(f, '# python file')
cmd.distribution.py_modules = [pkg_dir]
cmd.distribution.ext_modules = [Extension('foo', ['xxx'])]
cmd.distribution.packages = [pkg_dir]
cmd.distribution.script_name = 'setup.py'
# get_input should return 2 elements
self.assertEqual(len(cmd.get_inputs()), 2)
示例3: generate_extensions
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def generate_extensions(ext_modules, line_trace=False):
extensions = []
if line_trace:
print("define cython trace to True ...")
define_macros = [('CYTHON_TRACE', 1), ('CYTHON_TRACE_NOGIL', 1)]
else:
define_macros = []
for pyxfile in ext_modules:
ext = Extension(name='.'.join(pyxfile.split('/'))[:-4],
sources=[pyxfile],
define_macros=define_macros)
extensions.append(ext)
return extensions
示例4: test_get_outputs
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def test_get_outputs(self):
pkg_dir, dist = self.create_dist()
cmd = install_lib(dist)
# setting up a dist environment
cmd.compile = cmd.optimize = 1
cmd.install_dir = pkg_dir
f = os.path.join(pkg_dir, 'foo.py')
self.write_file(f, '# python file')
cmd.distribution.py_modules = [pkg_dir]
cmd.distribution.ext_modules = [Extension('foo', ['xxx'])]
cmd.distribution.packages = [pkg_dir]
cmd.distribution.script_name = 'setup.py'
# get_output should return 4 elements
self.assertTrue(len(cmd.get_outputs()) >= 2)
示例5: run
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def run(self):
# add numpy headers
import numpy
self.include_dirs.append(numpy.get_include())
# add dimod headers
include = os.path.join(os.path.dirname(__file__), 'dimod', 'include')
self.include_dirs.append(include)
if self.build_tests:
test_extensions = [Extension('*', ['tests/test_*'+ext])]
if USE_CYTHON:
test_extensions = cythonize(test_extensions,
# annotate=True
)
self.extensions.extend(test_extensions)
super().run()
示例6: test_get_outputs
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def test_get_outputs(self):
project_dir, dist = self.create_dist()
os.chdir(project_dir)
os.mkdir('spam')
cmd = install_lib(dist)
# setting up a dist environment
cmd.compile = cmd.optimize = 1
cmd.install_dir = self.mkdtemp()
f = os.path.join(project_dir, 'spam', '__init__.py')
self.write_file(f, '# python package')
cmd.distribution.ext_modules = [Extension('foo', ['xxx'])]
cmd.distribution.packages = ['spam']
cmd.distribution.script_name = 'setup.py'
# get_outputs should return 4 elements: spam/__init__.py and .pyc,
# foo.import-tag-abiflags.so / foo.pyd
outputs = cmd.get_outputs()
self.assertEqual(len(outputs), 4, outputs)
示例7: test_get_inputs
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def test_get_inputs(self):
project_dir, dist = self.create_dist()
os.chdir(project_dir)
os.mkdir('spam')
cmd = install_lib(dist)
# setting up a dist environment
cmd.compile = cmd.optimize = 1
cmd.install_dir = self.mkdtemp()
f = os.path.join(project_dir, 'spam', '__init__.py')
self.write_file(f, '# python package')
cmd.distribution.ext_modules = [Extension('foo', ['xxx'])]
cmd.distribution.packages = ['spam']
cmd.distribution.script_name = 'setup.py'
# get_inputs should return 2 elements: spam/__init__.py and
# foo.import-tag-abiflags.so / foo.pyd
inputs = cmd.get_inputs()
self.assertEqual(len(inputs), 2, inputs)
示例8: test_optional_extension
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def test_optional_extension(self):
# this extension will fail, but let's ignore this failure
# with the optional argument.
modules = [Extension('foo', ['xxx'], optional=False)]
dist = Distribution({'name': 'xx', 'ext_modules': modules})
cmd = self.build_ext(dist)
cmd.ensure_finalized()
self.assertRaises((UnknownFileError, CompileError),
cmd.run) # should raise an error
modules = [Extension('foo', ['xxx'], optional=True)]
dist = Distribution({'name': 'xx', 'ext_modules': modules})
cmd = self.build_ext(dist)
cmd.ensure_finalized()
cmd.run() # should pass
示例9: config_cython
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def config_cython():
"""Try to configure cython and return cython configuration"""
if not with_cython:
return []
# pylint: disable=unreachable
if os.name == 'nt':
print("WARNING: Cython is not supported on Windows, will compile without cython module")
return []
try:
from Cython.Build import cythonize
# from setuptools.extension import Extension
if sys.version_info >= (3, 0):
subdir = "_cy3"
else:
subdir = "_cy2"
ret = []
path = "mxnet/cython"
if os.name == 'nt':
library_dirs = ['mxnet', '../build/Release', '../build']
libraries = ['libmxnet']
else:
library_dirs = None
libraries = None
for fn in os.listdir(path):
if not fn.endswith(".pyx"):
continue
ret.append(Extension(
"mxnet/%s/.%s" % (subdir, fn[:-4]),
["mxnet/cython/%s" % fn],
include_dirs=["../include/", "../3rdparty/tvm/nnvm/include"],
library_dirs=library_dirs,
libraries=libraries,
language="c++"))
return cythonize(ret)
except ImportError:
print("WARNING: Cython is not installed, will compile without cython module")
return []
示例10: customize_compiler_for_nvcc
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
print(extra_postargs)
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
示例11: customize_compiler_for_nvcc
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
示例12: customize_compiler_for_nvcc
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
print(extra_postargs)
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
示例13: customize_compiler_for_nvcc
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
示例14: customize_compiler_for_nvcc
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
print extra_postargs
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
示例15: customize_compiler_for_nvcc
# 需要导入模块: from distutils import extension [as 别名]
# 或者: from distutils.extension import Extension [as 别名]
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
print(extra_postargs)
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler