本文整理汇总了Python中distributed.LocalCluster方法的典型用法代码示例。如果您正苦于以下问题:Python distributed.LocalCluster方法的具体用法?Python distributed.LocalCluster怎么用?Python distributed.LocalCluster使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类distributed
的用法示例。
在下文中一共展示了distributed.LocalCluster方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: spawn_cluster_and_client
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def spawn_cluster_and_client(
address: Optional[str] = None, **kwargs
) -> Tuple[Optional[LocalCluster], Optional[Client]]:
"""
If provided an address, create a Dask Client connection.
If not provided an address, create a LocalCluster and Client connection.
If not provided an address, other Dask kwargs are accepted and passed down to the
LocalCluster object.
Notes
-----
When using this function, the processing machine or container must have networking
capabilities enabled to function properly.
"""
cluster = None
if address is not None:
client = Client(address)
log.info(f"Connected to Remote Dask Cluster: {client}")
else:
cluster = LocalCluster(**kwargs)
client = Client(cluster)
log.info(f"Connected to Local Dask Cluster: {client}")
return cluster, client
示例2: shutdown_cluster_and_client
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def shutdown_cluster_and_client(
cluster: Optional[LocalCluster], client: Optional[Client]
) -> Tuple[Optional[LocalCluster], Optional[Client]]:
"""
Shutdown a cluster and client.
Notes
-----
When using this function, the processing machine or container must have networking
capabilities enabled to function properly.
"""
if cluster is not None:
cluster.close()
if client is not None:
client.shutdown()
client.close()
return cluster, client
示例3: start_cluster
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def start_cluster(diagnostics_port=0):
"Set up a LocalCluster for distributed"
hostname = socket.gethostname()
n_workers = os.cpu_count() // 2
cluster = LocalCluster(ip='localhost',
n_workers=n_workers,
diagnostics_port=diagnostics_port,
memory_limit=6e9)
client = Client(cluster)
params = { 'bokeh_port': cluster.scheduler.services['bokeh'].port,
'user': getpass.getuser(),
'scheduler_ip': cluster.scheduler.ip,
'hostname': hostname, }
print("If the link to the dashboard below doesn't work, run this command on a local terminal to set up a SSH tunnel:")
print()
print(" ssh -N -L {bokeh_port}:{scheduler_ip}:{bokeh_port} {hostname}.nci.org.au -l {user}".format(**params) )
return client
示例4: _n_workers_for_local_cluster
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def _n_workers_for_local_cluster(calcs):
"""The number of workers used in a LocalCluster
An upper bound is set at the cpu_count or the number of calcs submitted,
depending on which is smaller. This is to prevent more workers from
being started than needed (but also to prevent too many workers from
being started in the case that a large number of calcs are submitted).
"""
return min(cpu_count(), len(calcs))
示例5: _exec_calcs
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def _exec_calcs(calcs, parallelize=False, client=None, **compute_kwargs):
"""Execute the given calculations.
Parameters
----------
calcs : Sequence of ``aospy.Calc`` objects
parallelize : bool, default False
Whether to submit the calculations in parallel or not
client : distributed.Client or None
The distributed Client used if parallelize is set to True; if None
a distributed LocalCluster is used.
compute_kwargs : dict of keyword arguments passed to ``Calc.compute``
Returns
-------
A list of the values returned by each Calc object that was executed.
"""
if parallelize:
def func(calc):
"""Wrap _compute_or_skip_on_error to require only the calc
argument"""
if 'write_to_tar' in compute_kwargs:
compute_kwargs['write_to_tar'] = False
return _compute_or_skip_on_error(calc, compute_kwargs)
if client is None:
n_workers = _n_workers_for_local_cluster(calcs)
with distributed.LocalCluster(n_workers=n_workers) as cluster:
with distributed.Client(cluster) as client:
result = _submit_calcs_on_client(calcs, client, func)
else:
result = _submit_calcs_on_client(calcs, client, func)
if compute_kwargs['write_to_tar']:
_serial_write_to_tar(calcs)
return result
else:
return [_compute_or_skip_on_error(calc, compute_kwargs)
for calc in calcs]
示例6: external_client
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def external_client():
# Explicitly specify we want only 4 workers so that when running on
# continuous integration we don't request too many.
cluster = distributed.LocalCluster(n_workers=4)
client = distributed.Client(cluster)
yield client
client.close()
cluster.close()
示例7: setUp
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def setUp(self):
self.dagbag = DagBag(include_examples=True)
self.cluster = LocalCluster()
示例8: cluster_and_client
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def cluster_and_client(address: Optional[str] = None, **kwargs):
"""
If provided an address, create a Dask Client connection.
If not provided an address, create a LocalCluster and Client connection.
If not provided an address, other Dask kwargs are accepted and passed down to the
LocalCluster object.
These objects will only live for the duration of this context manager.
Examples
--------
>>> with cluster_and_client() as (cluster, client):
... img1 = AICSImage("1.tiff")
... img2 = AICSImage("2.czi")
... other processing
Notes
-----
When using this context manager, the processing machine or container must have
networking capabilities enabled to function properly.
"""
try:
cluster, client = spawn_cluster_and_client(address=address, **kwargs)
yield cluster, client
finally:
shutdown_cluster_and_client(cluster=cluster, client=client)
示例9: setup
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def setup():
from distributed import LocalCluster, Client
cluster = LocalCluster(n_workers=1, threads_per_worker=1, processes=False)
use_distributed(Client(cluster))
示例10: _get_local_cluster
# 需要导入模块: import distributed [as 别名]
# 或者: from distributed import LocalCluster [as 别名]
def _get_local_cluster():
# TODO: Add more parameters and configurations.
from distributed import LocalCluster
return LocalCluster()