当前位置: 首页>>代码示例>>Python>>正文


Python utils.BuildNetwork方法代码示例

本文整理汇总了Python中differential_privacy.dp_sgd.dp_optimizer.utils.BuildNetwork方法的典型用法代码示例。如果您正苦于以下问题:Python utils.BuildNetwork方法的具体用法?Python utils.BuildNetwork怎么用?Python utils.BuildNetwork使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在differential_privacy.dp_sgd.dp_optimizer.utils的用法示例。


在下文中一共展示了utils.BuildNetwork方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Eval

# 需要导入模块: from differential_privacy.dp_sgd.dp_optimizer import utils [as 别名]
# 或者: from differential_privacy.dp_sgd.dp_optimizer.utils import BuildNetwork [as 别名]
def Eval(mnist_data_file, network_parameters, num_testing_images,
         randomize, load_path, save_mistakes=False):
  """Evaluate MNIST for a number of steps.

  Args:
    mnist_data_file: Path of a file containing the MNIST images to process.
    network_parameters: parameters for defining and training the network.
    num_testing_images: the number of images we will evaluate on.
    randomize: if false, randomize; otherwise, read the testing images
      sequentially.
    load_path: path where to load trained parameters from.
    save_mistakes: save the mistakes if True.

  Returns:
    The evaluation accuracy as a float.
  """
  batch_size = 100
  # Like for training, we need a session for executing the TensorFlow graph.
  with tf.Graph().as_default(), tf.Session() as sess:
    # Create the basic Mnist model.
    images, labels = MnistInput(mnist_data_file, batch_size, randomize)
    logits, _, _ = utils.BuildNetwork(images, network_parameters)
    softmax = tf.nn.softmax(logits)

    # Load the variables.
    ckpt_state = tf.train.get_checkpoint_state(load_path)
    if not (ckpt_state and ckpt_state.model_checkpoint_path):
      raise ValueError("No model checkpoint to eval at %s\n" % load_path)

    saver = tf.train.Saver()
    saver.restore(sess, ckpt_state.model_checkpoint_path)
    coord = tf.train.Coordinator()
    _ = tf.train.start_queue_runners(sess=sess, coord=coord)

    total_examples = 0
    correct_predictions = 0
    image_index = 0
    mistakes = []
    for _ in xrange((num_testing_images + batch_size - 1) // batch_size):
      predictions, label_values = sess.run([softmax, labels])

      # Count how many were predicted correctly.
      for prediction, label_value in zip(predictions, label_values):
        total_examples += 1
        if np.argmax(prediction) == label_value:
          correct_predictions += 1
        elif save_mistakes:
          mistakes.append({"index": image_index,
                           "label": label_value,
                           "pred": np.argmax(prediction)})
        image_index += 1

  return (correct_predictions / total_examples,
          mistakes if save_mistakes else None) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:56,代码来源:dp_mnist.py


注:本文中的differential_privacy.dp_sgd.dp_optimizer.utils.BuildNetwork方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。