本文整理汇总了Python中detectron.utils.c2.const_fill方法的典型用法代码示例。如果您正苦于以下问题:Python c2.const_fill方法的具体用法?Python c2.const_fill怎么用?Python c2.const_fill使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类detectron.utils.c2
的用法示例。
在下文中一共展示了c2.const_fill方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mask_rcnn_fcn_head_v0up
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def mask_rcnn_fcn_head_v0up(model, blob_in, dim_in, spatial_scale):
"""v0up design: conv5, deconv 2x2 (no weight sharing with the box head)."""
blob_conv5, dim_conv5 = add_ResNet_roi_conv5_head_for_masks(
model,
blob_in,
dim_in,
spatial_scale
)
dim_reduced = cfg.MRCNN.DIM_REDUCED
model.ConvTranspose(
blob_conv5,
'conv5_mask',
dim_conv5,
dim_reduced,
kernel=2,
pad=0,
stride=2,
weight_init=('GaussianFill', {'std': 0.001}),
bias_init=const_fill(0.0)
)
blob_mask = model.Relu('conv5_mask', 'conv5_mask')
return blob_mask, dim_reduced
示例2: add_cluster_rcnn_outputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_cluster_rcnn_outputs(model, blob_in, dim):
"""Add Cluster RoI classification and bounding box regression output ops."""
# cluster Box classification layer
model.FC(
blob_in,
'cluster_cls_score',
dim,
2,
weight_init=gauss_fill(0.01),
bias_init=const_fill(0.0)
)
if not model.train: # == if test
# Only add softmax when testing; during training the softmax is combined
# with the label cross entropy loss for numerical stability
model.Softmax('cluster_cls_score', 'cluster_cls_prob', engine='CUDNN')
# Box regression layer
num_bbox_reg_classes = 2
model.FC(
blob_in,
'cluster_bbox_pred',
dim,
num_bbox_reg_classes * 4,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0)
)
示例3: add_topdown_lateral_module
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_topdown_lateral_module(
model, fpn_top, fpn_lateral, fpn_bottom, dim_top, dim_lateral
):
"""Add a top-down lateral module."""
# Lateral 1x1 conv
if cfg.FPN.USE_GN:
# use GroupNorm
lat = model.ConvGN(
fpn_lateral,
fpn_bottom + '_lateral',
dim_in=dim_lateral,
dim_out=dim_top,
group_gn=get_group_gn(dim_top),
kernel=1,
pad=0,
stride=1,
weight_init=(
const_fill(0.0) if cfg.FPN.ZERO_INIT_LATERAL
else ('XavierFill', {})),
bias_init=const_fill(0.0)
)
else:
lat = model.Conv(
fpn_lateral,
fpn_bottom + '_lateral',
dim_in=dim_lateral,
dim_out=dim_top,
kernel=1,
pad=0,
stride=1,
weight_init=(
const_fill(0.0)
if cfg.FPN.ZERO_INIT_LATERAL else ('XavierFill', {})
),
bias_init=const_fill(0.0)
)
# Top-down 2x upsampling
td = model.net.UpsampleNearest(fpn_top, fpn_bottom + '_topdown', scale=2)
# Sum lateral and top-down
model.net.Sum([lat, td], fpn_bottom)
示例4: add_fast_rcnn_outputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_fast_rcnn_outputs(model, blob_in, dim):
"""Add RoI classification and bounding box regression output ops."""
# Box classification layer
model.FC(
blob_in,
'cls_score',
dim,
cfg.MODEL.NUM_CLASSES if not cfg.MODEL.Cluster_RCNN_ON else cfg.MODEL.NUM_CLASSES-1,
weight_init=gauss_fill(0.01),
bias_init=const_fill(0.0)
)
if not model.train: # == if test
# Only add softmax when testing; during training the softmax is combined
# with the label cross entropy loss for numerical stability
model.Softmax('cls_score', 'cls_prob', engine='CUDNN')
# Box regression layer
num_bbox_reg_classes = (
2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else cfg.MODEL.NUM_CLASSES
if not cfg.MODEL.Cluster_RCNN_ON else cfg.MODEL.NUM_CLASSES-1
)
model.FC(
blob_in,
'bbox_pred',
dim,
num_bbox_reg_classes * 4,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0)
)
if cfg.MODEL.CASCADE_ON:
# add stage parameters to list
if '1' not in model.stage_params:
model.stage_params['1'] = []
for idx in range(-2, 0):
model.stage_params['1'].append(model.weights[idx])
model.stage_params['1'].append(model.biases[idx])
示例5: add_cascade_rcnn_outputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_cascade_rcnn_outputs(model, blob_in, dim, stage):
"""Add RoI classification and bounding box regression output ops."""
stage_name = "_{}".format(stage)
model.FC(
blob_in,
"cls_score" + stage_name,
dim,
model.num_classes,
weight_init=gauss_fill(0.01),
bias_init=const_fill(0.0),
)
if not model.train: # == if test
# Only add softmax when testing; during training the softmax is combined
# with the label cross entropy loss for numerical stability
model.Softmax("cls_score" + stage_name, "cls_prob" + stage_name, engine="CUDNN")
num_bbox_reg_classes = 2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else model.num_classes
model.FC(
blob_in,
"bbox_pred" + stage_name,
dim,
num_bbox_reg_classes * 4,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0),
)
# add stage parameters to list
if str(stage) not in model.stage_params:
model.stage_params[str(stage)] = []
for idx in range(-2, 0):
model.stage_params[str(stage)].append(model.weights[idx])
model.stage_params[str(stage)].append(model.biases[idx])
return "cls_prob" + stage_name, "bbox_pred" + stage_name
示例6: mask_rcnn_fcn_head_v0upshare
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def mask_rcnn_fcn_head_v0upshare(model, blob_in, dim_in, spatial_scale):
"""Use a ResNet "conv5" / "stage5" head for mask prediction. Weights and
computation are shared with the conv5 box head. Computation can only be
shared during training, since inference is cascaded.
v0upshare design: conv5, convT 2x2.
"""
# Since box and mask head are shared, these must match
assert cfg.MRCNN.ROI_XFORM_RESOLUTION == cfg.FAST_RCNN.ROI_XFORM_RESOLUTION
if model.train: # share computation with bbox head at training time
dim_conv5 = 2048
blob_conv5 = model.net.SampleAs(
['res5_2_sum', 'roi_has_mask_int32'],
['_[mask]_res5_2_sum_sliced']
)
else: # re-compute at test time
blob_conv5, dim_conv5 = add_ResNet_roi_conv5_head_for_masks(
model,
blob_in,
dim_in,
spatial_scale
)
dim_reduced = cfg.MRCNN.DIM_REDUCED
blob_mask = model.ConvTranspose(
blob_conv5,
'conv5_mask',
dim_conv5,
dim_reduced,
kernel=2,
pad=0,
stride=2,
weight_init=(cfg.MRCNN.CONV_INIT, {'std': 0.001}), # std only for gauss
bias_init=const_fill(0.0)
)
model.Relu('conv5_mask', 'conv5_mask')
return blob_mask, dim_reduced
示例7: add_fast_rcnn_outputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_fast_rcnn_outputs(model, blob_in, dim):
"""Add RoI classification and bounding box regression output ops."""
# Box classification layer
model.FC(
blob_in,
'cls_score',
dim,
model.num_classes,
weight_init=gauss_fill(0.01),
bias_init=const_fill(0.0)
)
if not model.train: # == if test
# Only add softmax when testing; during training the softmax is combined
# with the label cross entropy loss for numerical stability
model.Softmax('cls_score', 'cls_prob', engine='CUDNN')
# Box regression layer
num_bbox_reg_classes = (
2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else model.num_classes
)
model.FC(
blob_in,
'bbox_pred',
dim,
num_bbox_reg_classes * 4,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0)
)
if cfg.MODEL.CASCADE_ON:
# add stage parameters to list
if '1' not in model.stage_params:
model.stage_params['1'] = []
for idx in range(-2, 0):
model.stage_params['1'].append(model.weights[idx])
model.stage_params['1'].append(model.biases[idx])
示例8: add_fast_rcnn_outputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_fast_rcnn_outputs(model, blob_in, dim):
"""Add RoI classification and bounding box regression output ops."""
# Box classification layer
model.FC(
blob_in,
'cls_score',
dim,
model.num_classes,
weight_init=gauss_fill(0.01),
bias_init=const_fill(0.0)
)
if not model.train: # == if test
# Only add softmax when testing; during training the softmax is combined
# with the label cross entropy loss for numerical stability
model.Softmax('cls_score', 'cls_prob', engine='CUDNN')
# Box regression layer
num_bbox_reg_classes = (
2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else model.num_classes
)
model.FC(
blob_in,
'bbox_pred',
dim,
num_bbox_reg_classes * 4,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0)
)
示例9: _add_image_level_classifier
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def _add_image_level_classifier(model, blob_in, dim_in, spatial_scale_in):
from detectron.utils.c2 import const_fill
from detectron.utils.c2 import gauss_fill
def negateGrad(inputs, outputs):
outputs[0].feed(inputs[0].data)
def grad_negateGrad(inputs, outputs):
scale = cfg.TRAIN.DA_IMG_GRL_WEIGHT
grad_output = inputs[-1]
outputs[0].reshape(grad_output.shape)
outputs[0].data[...] = -1.0*scale*grad_output.data
model.GradientScalerLayer([blob_in], ['da_grl'], -1.0*cfg.TRAIN.DA_IMG_GRL_WEIGHT)
model.Conv('da_grl', 'da_conv_1', dim_in, 512, kernel=1, pad=0, stride=1, weight_init=gauss_fill(0.001), bias_init=const_fill(0.0))
model.Relu('da_conv_1', 'da_conv_1')
model.Conv('da_conv_1', 'da_conv_2',
512,
1,
kernel=1,
pad=0,
stride=1,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0)
)
if model.train:
model.net.SpatialNarrowAs(
['da_label_wide', 'da_conv_2'], 'da_label'
)
loss_da = model.net.SigmoidCrossEntropyLoss(
['da_conv_2', 'da_label'],
'loss_da',
scale=model.GetLossScale()
)
loss_gradient = blob_utils.get_loss_gradients(model, [loss_da])
model.AddLosses('loss_da')
return loss_gradient
else:
return None
示例10: add_fast_rcnn_outputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_fast_rcnn_outputs(model, blob_in, dim):
"""Add RoI classification and bounding box regression output ops."""
# Box classification layer
model.FC(
blob_in,
'cls_score',
dim,
model.num_classes,
weight_init=gauss_fill(0.01),
bias_init=const_fill(0.0)
)
if not model.train: # == if test
# Only add softmax when testing; during training the softmax is combined
# with the label cross entropy loss for numerical stability
model.Softmax('cls_score', 'cls_prob', engine='CUDNN')
# Box regression layer
num_bbox_reg_classes = (
2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else model.num_classes
)
model.FC(
blob_in,
'bbox_pred',
dim,
num_bbox_reg_classes * 4,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0)
)
if cfg.PRED_STD:
if cfg.PRED_STD_LOG:
bias = 0.
model.FC(
blob_in, #'blob_in0'
'bbox_pred_std',
dim,
num_bbox_reg_classes * 4,
weight_init=gauss_fill(0.0001),
bias_init=const_fill(bias)
)
model.net.Copy('bbox_pred_std', 'bbox_pred_std_abs')
#model.Relu('bbox_pred_std', 'bbox_pred_std_abs')
#model.net.Sigmoid('bbox_pred_std', 'bbox_pred_std_abs')
示例11: add_mask_rcnn_outputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def add_mask_rcnn_outputs(model, blob_in, dim):
"""Add Mask R-CNN specific outputs: either mask logits or probs."""
num_cls = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
if cfg.MRCNN.USE_FC_OUTPUT:
# Predict masks with a fully connected layer (ignore 'fcn' in the blob
# name)
dim_fc = int(dim * (cfg.MRCNN.RESOLUTION / cfg.MRCNN.UPSAMPLE_RATIO)**2)
blob_out = model.FC(
blob_in,
'mask_fcn_logits',
dim_fc,
num_cls * cfg.MRCNN.RESOLUTION**2,
weight_init=gauss_fill(0.001),
bias_init=const_fill(0.0)
)
else:
# Predict mask using Conv
# Use GaussianFill for class-agnostic mask prediction; fills based on
# fan-in can be too large in this case and cause divergence
fill = (
cfg.MRCNN.CONV_INIT
if cfg.MRCNN.CLS_SPECIFIC_MASK else 'GaussianFill'
)
blob_out = model.Conv(
blob_in,
'mask_fcn_logits',
dim,
num_cls,
kernel=1,
pad=0,
stride=1,
weight_init=(fill, {'std': 0.001}),
bias_init=const_fill(0.0)
)
if cfg.MRCNN.UPSAMPLE_RATIO > 1:
blob_out = model.BilinearInterpolation(
'mask_fcn_logits', 'mask_fcn_logits_up', num_cls, num_cls,
cfg.MRCNN.UPSAMPLE_RATIO
)
if not model.train: # == if test
blob_out = model.net.Sigmoid(blob_out, 'mask_fcn_probs')
return blob_out
示例12: mask_rcnn_fcn_head_v1upXconvs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def mask_rcnn_fcn_head_v1upXconvs(
model, blob_in, dim_in, spatial_scale, num_convs
):
"""v1upXconvs design: X * (conv 3x3), convT 2x2."""
current = model.RoIFeatureTransform(
blob_in,
blob_out='_[mask]_roi_feat',
blob_rois='mask_rois',
method=cfg.MRCNN.ROI_XFORM_METHOD,
resolution=cfg.MRCNN.ROI_XFORM_RESOLUTION,
sampling_ratio=cfg.MRCNN.ROI_XFORM_SAMPLING_RATIO,
spatial_scale=spatial_scale
)
dilation = cfg.MRCNN.DILATION
dim_inner = cfg.MRCNN.DIM_REDUCED
for i in range(num_convs):
current = model.Conv(
current,
'_[mask]_fcn' + str(i + 1),
dim_in,
dim_inner,
kernel=3,
dilation=dilation,
pad=1 * dilation,
stride=1,
weight_init=(cfg.MRCNN.CONV_INIT, {'std': 0.001}),
bias_init=('ConstantFill', {'value': 0.})
)
current = model.Relu(current, current)
dim_in = dim_inner
# upsample layer
model.ConvTranspose(
current,
'conv5_mask',
dim_inner,
dim_inner,
kernel=2,
pad=0,
stride=2,
weight_init=(cfg.MRCNN.CONV_INIT, {'std': 0.001}),
bias_init=const_fill(0.0)
)
blob_mask = model.Relu('conv5_mask', 'conv5_mask')
return blob_mask, dim_inner
示例13: mask_rcnn_fcn_head_v1upXconvs_gn
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import const_fill [as 别名]
def mask_rcnn_fcn_head_v1upXconvs_gn(
model, blob_in, dim_in, spatial_scale, num_convs
):
"""v1upXconvs design: X * (conv 3x3), convT 2x2, with GroupNorm"""
current = model.RoIFeatureTransform(
blob_in,
blob_out='_mask_roi_feat',
blob_rois='mask_rois',
method=cfg.MRCNN.ROI_XFORM_METHOD,
resolution=cfg.MRCNN.ROI_XFORM_RESOLUTION,
sampling_ratio=cfg.MRCNN.ROI_XFORM_SAMPLING_RATIO,
spatial_scale=spatial_scale
)
dilation = cfg.MRCNN.DILATION
dim_inner = cfg.MRCNN.DIM_REDUCED
for i in range(num_convs):
current = model.ConvGN(
current,
'_mask_fcn' + str(i + 1),
dim_in,
dim_inner,
group_gn=get_group_gn(dim_inner),
kernel=3,
pad=1 * dilation,
stride=1,
weight_init=(cfg.MRCNN.CONV_INIT, {'std': 0.001}),
bias_init=('ConstantFill', {'value': 0.})
)
current = model.Relu(current, current)
dim_in = dim_inner
# upsample layer
model.ConvTranspose(
current,
'conv5_mask',
dim_inner,
dim_inner,
kernel=2,
pad=0,
stride=2,
weight_init=(cfg.MRCNN.CONV_INIT, {'std': 0.001}),
bias_init=const_fill(0.0)
)
blob_mask = model.Relu('conv5_mask', 'conv5_mask')
return blob_mask, dim_inner