本文整理汇总了Python中detectron.utils.c2.NamedCudaScope方法的典型用法代码示例。如果您正苦于以下问题:Python c2.NamedCudaScope方法的具体用法?Python c2.NamedCudaScope怎么用?Python c2.NamedCudaScope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类detectron.utils.c2
的用法示例。
在下文中一共展示了c2.NamedCudaScope方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_data_parallel_model
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def build_data_parallel_model(model, single_gpu_build_func):
"""Build a data parallel model given a function that builds the model on a
single GPU.
"""
if model.only_build_forward_pass:
single_gpu_build_func(model)
elif model.train:
all_loss_gradients = _build_forward_graph(model, single_gpu_build_func)
# Add backward pass on all GPUs
model.AddGradientOperators(all_loss_gradients)
if cfg.NUM_GPUS > 1:
_add_allreduce_graph(model)
for gpu_id in range(cfg.NUM_GPUS):
# After allreduce, all GPUs perform SGD updates on their identical
# params and gradients in parallel
with c2_utils.NamedCudaScope(gpu_id):
add_single_gpu_param_update_ops(model, gpu_id)
else:
# Test-time network operates on single GPU
# Test-time parallelism is implemented through multiprocessing
with c2_utils.NamedCudaScope(model.target_gpu_id):
single_gpu_build_func(model)
示例2: create_enqueue_blobs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def create_enqueue_blobs(self):
blob_names = self.get_output_names()
enqueue_blob_names = [
'{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names
]
for gpu_id in range(self._num_gpus):
with c2_utils.NamedCudaScope(gpu_id):
for blob in enqueue_blob_names:
workspace.CreateBlob(core.ScopedName(blob))
return enqueue_blob_names
示例3: _build_forward_graph
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def _build_forward_graph(model, single_gpu_build_func):
"""Construct the forward graph on each GPU."""
all_loss_gradients = {} # Will include loss gradients from all GPUs
# Build the model on each GPU with correct name and device scoping
for gpu_id in range(cfg.NUM_GPUS):
with c2_utils.NamedCudaScope(gpu_id):
all_loss_gradients.update(single_gpu_build_func(model))
return all_loss_gradients
示例4: add_training_inputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def add_training_inputs(model, roidb=None):
"""Create network input ops and blobs used for training. To be called
*after* model_builder.create().
"""
# Implementation notes:
# Typically, one would create the input ops and then the rest of the net.
# However, creating the input ops depends on loading the dataset, which
# can take a few minutes for COCO.
# We prefer to avoid waiting so debugging can fail fast.
# Thus, we create the net *without input ops* prior to loading the
# dataset, and then add the input ops after loading the dataset.
# Since we defer input op creation, we need to do a little bit of surgery
# to place the input ops at the start of the network op list.
assert model.train, 'Training inputs can only be added to a trainable model'
if roidb is not None:
# To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
model.roi_data_loader = RoIDataLoader(
roidb,
num_loaders=cfg.DATA_LOADER.NUM_THREADS,
minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
)
orig_num_op = len(model.net._net.op)
blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True)
for gpu_id in range(cfg.NUM_GPUS):
with c2_utils.NamedCudaScope(gpu_id):
for blob_name in blob_names:
workspace.CreateBlob(core.ScopedName(blob_name))
model.net.DequeueBlobs(
model.roi_data_loader._blobs_queue_name, blob_names
)
# A little op surgery to move input ops to the start of the net
diff = len(model.net._net.op) - orig_num_op
new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
del model.net._net.op[:]
model.net._net.op.extend(new_op)
示例5: generate_proposals_on_roidb
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def generate_proposals_on_roidb(
model, roidb, start_ind=None, end_ind=None, total_num_images=None,
gpu_id=0,
):
"""Generate RPN proposals on all images in an imdb."""
_t = Timer()
num_images = len(roidb)
roidb_boxes = [[] for _ in range(num_images)]
roidb_scores = [[] for _ in range(num_images)]
roidb_ids = [[] for _ in range(num_images)]
if start_ind is None:
start_ind = 0
end_ind = num_images
total_num_images = num_images
for i in range(num_images):
roidb_ids[i] = roidb[i]['id']
im = cv2.imread(roidb[i]['image'])
with c2_utils.NamedCudaScope(gpu_id):
_t.tic()
roidb_boxes[i], roidb_scores[i] = im_proposals(model, im)
_t.toc()
if i % 10 == 0:
ave_time = _t.average_time
eta_seconds = ave_time * (num_images - i - 1)
eta = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info(
(
'rpn_generate: range [{:d}, {:d}] of {:d}: '
'{:d}/{:d} {:.3f}s (eta: {})'
).format(
start_ind + 1, end_ind, total_num_images, start_ind + i + 1,
start_ind + num_images, ave_time, eta
)
)
return roidb_boxes, roidb_scores, roidb_ids
示例6: get_rpn_box_proposals
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def get_rpn_box_proposals(im, args):
cfg.immutable(False)
merge_cfg_from_file(args.rpn_cfg)
cfg.NUM_GPUS = 1
cfg.MODEL.RPN_ONLY = True
cfg.TEST.RPN_PRE_NMS_TOP_N = 10000
cfg.TEST.RPN_POST_NMS_TOP_N = 2000
assert_and_infer_cfg(cache_urls=False)
model = model_engine.initialize_model_from_cfg(args.rpn_pkl)
with c2_utils.NamedCudaScope(0):
boxes, scores = rpn_engine.im_proposals(model, im)
return boxes, scores
示例7: add_training_inputs
# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def add_training_inputs(model, source_roidb=None, target_roidb=None):
"""Create network input ops and blobs used for training. To be called
*after* model_builder.create().
"""
# Implementation notes:
# Typically, one would create the input ops and then the rest of the net.
# However, creating the input ops depends on loading the dataset, which
# can take a few minutes for COCO.
# We prefer to avoid waiting so debugging can fail fast.
# Thus, we create the net *without input ops* prior to loading the
# dataset, and then add the input ops after loading the dataset.
# Since we defer input op creation, we need to do a little bit of surgery
# to place the input ops at the start of the network op list.
assert model.train, 'Training inputs can only be added to a trainable model'
if source_roidb is not None:
# To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
model.roi_data_loader = RoIDataLoader(
source_roidb=source_roidb,
target_roidb=target_roidb,
num_loaders=cfg.DATA_LOADER.NUM_THREADS,
minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
)
orig_num_op = len(model.net._net.op)
blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True)
for gpu_id in range(cfg.NUM_GPUS):
with c2_utils.NamedCudaScope(gpu_id):
for blob_name in blob_names:
workspace.CreateBlob(core.ScopedName(blob_name))
model.net.DequeueBlobs(
model.roi_data_loader._blobs_queue_name, blob_names
)
# A little op surgery to move input ops to the start of the net
diff = len(model.net._net.op) - orig_num_op
new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
del model.net._net.op[:]
model.net._net.op.extend(new_op)