当前位置: 首页>>代码示例>>Python>>正文


Python c2.NamedCudaScope方法代码示例

本文整理汇总了Python中detectron.utils.c2.NamedCudaScope方法的典型用法代码示例。如果您正苦于以下问题:Python c2.NamedCudaScope方法的具体用法?Python c2.NamedCudaScope怎么用?Python c2.NamedCudaScope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在detectron.utils.c2的用法示例。


在下文中一共展示了c2.NamedCudaScope方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_data_parallel_model

# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def build_data_parallel_model(model, single_gpu_build_func):
    """Build a data parallel model given a function that builds the model on a
    single GPU.
    """
    if model.only_build_forward_pass:
        single_gpu_build_func(model)
    elif model.train:
        all_loss_gradients = _build_forward_graph(model, single_gpu_build_func)
        # Add backward pass on all GPUs
        model.AddGradientOperators(all_loss_gradients)
        if cfg.NUM_GPUS > 1:
            _add_allreduce_graph(model)
        for gpu_id in range(cfg.NUM_GPUS):
            # After allreduce, all GPUs perform SGD updates on their identical
            # params and gradients in parallel
            with c2_utils.NamedCudaScope(gpu_id):
                add_single_gpu_param_update_ops(model, gpu_id)
    else:
        # Test-time network operates on single GPU
        # Test-time parallelism is implemented through multiprocessing
        with c2_utils.NamedCudaScope(model.target_gpu_id):
            single_gpu_build_func(model) 
开发者ID:fyangneil,项目名称:Clustered-Object-Detection-in-Aerial-Image,代码行数:24,代码来源:optimizer.py

示例2: create_enqueue_blobs

# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def create_enqueue_blobs(self):
        blob_names = self.get_output_names()
        enqueue_blob_names = [
            '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names
        ]
        for gpu_id in range(self._num_gpus):
            with c2_utils.NamedCudaScope(gpu_id):
                for blob in enqueue_blob_names:
                    workspace.CreateBlob(core.ScopedName(blob))
        return enqueue_blob_names 
开发者ID:yihui-he,项目名称:KL-Loss,代码行数:12,代码来源:loader.py

示例3: _build_forward_graph

# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def _build_forward_graph(model, single_gpu_build_func):
    """Construct the forward graph on each GPU."""
    all_loss_gradients = {}  # Will include loss gradients from all GPUs
    # Build the model on each GPU with correct name and device scoping
    for gpu_id in range(cfg.NUM_GPUS):
        with c2_utils.NamedCudaScope(gpu_id):
            all_loss_gradients.update(single_gpu_build_func(model))
    return all_loss_gradients 
开发者ID:yihui-he,项目名称:KL-Loss,代码行数:10,代码来源:optimizer.py

示例4: add_training_inputs

# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def add_training_inputs(model, roidb=None):
    """Create network input ops and blobs used for training. To be called
    *after* model_builder.create().
    """
    # Implementation notes:
    #   Typically, one would create the input ops and then the rest of the net.
    #   However, creating the input ops depends on loading the dataset, which
    #   can take a few minutes for COCO.
    #   We prefer to avoid waiting so debugging can fail fast.
    #   Thus, we create the net *without input ops* prior to loading the
    #   dataset, and then add the input ops after loading the dataset.
    #   Since we defer input op creation, we need to do a little bit of surgery
    #   to place the input ops at the start of the network op list.
    assert model.train, 'Training inputs can only be added to a trainable model'
    if roidb is not None:
        # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
        model.roi_data_loader = RoIDataLoader(
            roidb,
            num_loaders=cfg.DATA_LOADER.NUM_THREADS,
            minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
            blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
        )
    orig_num_op = len(model.net._net.op)
    blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True)
    for gpu_id in range(cfg.NUM_GPUS):
        with c2_utils.NamedCudaScope(gpu_id):
            for blob_name in blob_names:
                workspace.CreateBlob(core.ScopedName(blob_name))
            model.net.DequeueBlobs(
                model.roi_data_loader._blobs_queue_name, blob_names
            )
    # A little op surgery to move input ops to the start of the net
    diff = len(model.net._net.op) - orig_num_op
    new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
    del model.net._net.op[:]
    model.net._net.op.extend(new_op) 
开发者ID:yihui-he,项目名称:KL-Loss,代码行数:38,代码来源:model_builder.py

示例5: generate_proposals_on_roidb

# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def generate_proposals_on_roidb(
    model, roidb, start_ind=None, end_ind=None, total_num_images=None,
    gpu_id=0,
):
    """Generate RPN proposals on all images in an imdb."""
    _t = Timer()
    num_images = len(roidb)
    roidb_boxes = [[] for _ in range(num_images)]
    roidb_scores = [[] for _ in range(num_images)]
    roidb_ids = [[] for _ in range(num_images)]
    if start_ind is None:
        start_ind = 0
        end_ind = num_images
        total_num_images = num_images
    for i in range(num_images):
        roidb_ids[i] = roidb[i]['id']
        im = cv2.imread(roidb[i]['image'])
        with c2_utils.NamedCudaScope(gpu_id):
            _t.tic()
            roidb_boxes[i], roidb_scores[i] = im_proposals(model, im)
            _t.toc()
        if i % 10 == 0:
            ave_time = _t.average_time
            eta_seconds = ave_time * (num_images - i - 1)
            eta = str(datetime.timedelta(seconds=int(eta_seconds)))
            logger.info(
                (
                    'rpn_generate: range [{:d}, {:d}] of {:d}: '
                    '{:d}/{:d} {:.3f}s (eta: {})'
                ).format(
                    start_ind + 1, end_ind, total_num_images, start_ind + i + 1,
                    start_ind + num_images, ave_time, eta
                )
            )

    return roidb_boxes, roidb_scores, roidb_ids 
开发者ID:yihui-he,项目名称:KL-Loss,代码行数:38,代码来源:rpn_generator.py

示例6: get_rpn_box_proposals

# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def get_rpn_box_proposals(im, args):
    cfg.immutable(False)
    merge_cfg_from_file(args.rpn_cfg)
    cfg.NUM_GPUS = 1
    cfg.MODEL.RPN_ONLY = True
    cfg.TEST.RPN_PRE_NMS_TOP_N = 10000
    cfg.TEST.RPN_POST_NMS_TOP_N = 2000
    assert_and_infer_cfg(cache_urls=False)

    model = model_engine.initialize_model_from_cfg(args.rpn_pkl)
    with c2_utils.NamedCudaScope(0):
        boxes, scores = rpn_engine.im_proposals(model, im)
    return boxes, scores 
开发者ID:yihui-he,项目名称:KL-Loss,代码行数:15,代码来源:infer.py

示例7: add_training_inputs

# 需要导入模块: from detectron.utils import c2 [as 别名]
# 或者: from detectron.utils.c2 import NamedCudaScope [as 别名]
def add_training_inputs(model, source_roidb=None, target_roidb=None):
    """Create network input ops and blobs used for training. To be called
    *after* model_builder.create().
    """
    # Implementation notes:
    #   Typically, one would create the input ops and then the rest of the net.
    #   However, creating the input ops depends on loading the dataset, which
    #   can take a few minutes for COCO.
    #   We prefer to avoid waiting so debugging can fail fast.
    #   Thus, we create the net *without input ops* prior to loading the
    #   dataset, and then add the input ops after loading the dataset.
    #   Since we defer input op creation, we need to do a little bit of surgery
    #   to place the input ops at the start of the network op list.
    assert model.train, 'Training inputs can only be added to a trainable model'
    if source_roidb is not None:
        # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1
        model.roi_data_loader = RoIDataLoader(
            source_roidb=source_roidb,
            target_roidb=target_roidb,
            num_loaders=cfg.DATA_LOADER.NUM_THREADS,
            minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE,
            blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY
        )
    orig_num_op = len(model.net._net.op)
    blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True)
    for gpu_id in range(cfg.NUM_GPUS):
        with c2_utils.NamedCudaScope(gpu_id):
            for blob_name in blob_names:
                workspace.CreateBlob(core.ScopedName(blob_name))
            model.net.DequeueBlobs(
                model.roi_data_loader._blobs_queue_name, blob_names
            )
    # A little op surgery to move input ops to the start of the net
    diff = len(model.net._net.op) - orig_num_op
    new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff]
    del model.net._net.op[:]
    model.net._net.op.extend(new_op) 
开发者ID:krumo,项目名称:Detectron-DA-Faster-RCNN,代码行数:39,代码来源:model_builder.py


注:本文中的detectron.utils.c2.NamedCudaScope方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。