本文整理汇总了Python中detectron.utils.boxes.bbox_transform方法的典型用法代码示例。如果您正苦于以下问题:Python boxes.bbox_transform方法的具体用法?Python boxes.bbox_transform怎么用?Python boxes.bbox_transform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类detectron.utils.boxes
的用法示例。
在下文中一共展示了boxes.bbox_transform方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_bbox_transform_and_inverse
# 需要导入模块: from detectron.utils import boxes [as 别名]
# 或者: from detectron.utils.boxes import bbox_transform [as 别名]
def test_bbox_transform_and_inverse(self):
weights = (5, 5, 10, 10)
src_boxes = random_boxes([10, 10, 20, 20], 1, 10)
dst_boxes = random_boxes([10, 10, 20, 20], 1, 10)
deltas = box_utils.bbox_transform_inv(
src_boxes, dst_boxes, weights=weights
)
dst_boxes_reconstructed = box_utils.bbox_transform(
src_boxes, deltas, weights=weights
)
np.testing.assert_array_almost_equal(
dst_boxes, dst_boxes_reconstructed, decimal=5
)
示例2: test_bbox_dataset_to_prediction_roundtrip
# 需要导入模块: from detectron.utils import boxes [as 别名]
# 或者: from detectron.utils.boxes import bbox_transform [as 别名]
def test_bbox_dataset_to_prediction_roundtrip(self):
"""Simulate the process of reading a ground-truth box from a dataset,
make predictions from proposals, convert the predictions back to the
dataset format, and then use the COCO API to compute IoU overlap between
the gt box and the predictions. These should have IoU of 1.
"""
weights = (5, 5, 10, 10)
# 1/ "read" a box from a dataset in the default (x1, y1, w, h) format
gt_xywh_box = [10, 20, 100, 150]
# 2/ convert it to our internal (x1, y1, x2, y2) format
gt_xyxy_box = box_utils.xywh_to_xyxy(gt_xywh_box)
# 3/ consider nearby proposal boxes
prop_xyxy_boxes = random_boxes(gt_xyxy_box, 10, 10)
# 4/ compute proposal-to-gt transformation deltas
deltas = box_utils.bbox_transform_inv(
prop_xyxy_boxes, np.array([gt_xyxy_box]), weights=weights
)
# 5/ use deltas to transform proposals to xyxy predicted box
pred_xyxy_boxes = box_utils.bbox_transform(
prop_xyxy_boxes, deltas, weights=weights
)
# 6/ convert xyxy predicted box to xywh predicted box
pred_xywh_boxes = box_utils.xyxy_to_xywh(pred_xyxy_boxes)
# 7/ use COCO API to compute IoU
not_crowd = [int(False)] * pred_xywh_boxes.shape[0]
ious = COCOmask.iou(pred_xywh_boxes, np.array([gt_xywh_box]), not_crowd)
np.testing.assert_array_almost_equal(ious, np.ones(ious.shape))
示例3: forward
# 需要导入模块: from detectron.utils import boxes [as 别名]
# 或者: from detectron.utils.boxes import bbox_transform [as 别名]
def forward(self, inputs, outputs):
"""See modeling.detector.DecodeBBoxes for inputs/outputs
documentation.
"""
bbox_deltas = inputs[0].data
assert cfg.MODEL.CLS_AGNOSTIC_BBOX_REG
assert bbox_deltas.shape[1] == 8
bbox_deltas = bbox_deltas[:, -4:]
bbox_data = inputs[1].data
assert bbox_data.shape[1] == 5
batch_inds = bbox_data[:, :1]
bbox_prior = bbox_data[:, 1:]
# Transform bbox priors into proposals via bbox transformations
bbox_decode = box_utils.bbox_transform(
bbox_prior, bbox_deltas, self._bbox_reg_weights
)
# remove mal-boxes with non-positive width or height and ground
# truth boxes during training
if len(inputs) > 2:
mapped_gt_boxes = inputs[2].data
max_overlap = mapped_gt_boxes[:, 4]
keep = _filter_boxes(bbox_decode, max_overlap)
bbox_decode = bbox_decode[keep, :]
batch_inds = batch_inds[keep, :]
bbox_decode = np.hstack((batch_inds, bbox_decode))
outputs[0].reshape(bbox_decode.shape)
outputs[0].data[...] = bbox_decode
示例4: forward
# 需要导入模块: from detectron.utils import boxes [as 别名]
# 或者: from detectron.utils.boxes import bbox_transform [as 别名]
def forward(self, inputs, outputs):
"""See modeling.detector.AddBBoxAccuracy for inputs/outputs
documentation.
"""
# predicted bbox deltas
bbox_deltas = inputs[0].data
# proposals
bbox_data = inputs[1].data
assert bbox_data.shape[1] == 5
bbox_prior = bbox_data[:, 1:]
# labels
labels = inputs[2].data
# mapped gt boxes
mapped_gt_boxes = inputs[3].data
gt_boxes = mapped_gt_boxes[:, :4]
max_overlap = mapped_gt_boxes[:, 4]
# bbox iou only for fg and non-gt boxes
keep_inds = np.where((labels > 0) & (max_overlap < 1.0))[0]
num_boxes = keep_inds.size
bbox_deltas = bbox_deltas[keep_inds, :]
bbox_prior = bbox_prior[keep_inds, :]
labels = labels[keep_inds]
gt_boxes = gt_boxes[keep_inds, :]
max_overlap = max_overlap[keep_inds]
if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG or num_boxes == 0:
bbox_deltas = bbox_deltas[:, -4:]
else:
bbox_deltas = np.vstack(
[
bbox_deltas[i, labels[i] * 4: labels[i] * 4 + 4]
for i in range(num_boxes)
]
)
pred_boxes = box_utils.bbox_transform(
bbox_prior, bbox_deltas, self._bbox_reg_weights
)
avg_iou = 0.
pre_avg_iou = sum(max_overlap)
for i in range(num_boxes):
gt_box = gt_boxes[i, :]
pred_box = pred_boxes[i, :]
tmp_iou = box_utils.bbox_overlaps(
gt_box[np.newaxis, :].astype(dtype=np.float32, copy=False),
pred_box[np.newaxis, :].astype(dtype=np.float32, copy=False),
)
avg_iou += tmp_iou[0]
if num_boxes > 0:
avg_iou /= num_boxes
pre_avg_iou /= num_boxes
outputs[0].reshape([1])
outputs[0].data[...] = avg_iou
outputs[1].reshape([1])
outputs[1].data[...] = pre_avg_iou