本文整理汇总了Python中deployment.model_deploy.optimize_clones方法的典型用法代码示例。如果您正苦于以下问题:Python model_deploy.optimize_clones方法的具体用法?Python model_deploy.optimize_clones怎么用?Python model_deploy.optimize_clones使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类deployment.model_deploy
的用法示例。
在下文中一共展示了model_deploy.optimize_clones方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testCreateLogisticClassifier
# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import optimize_clones [as 别名]
def testCreateLogisticClassifier(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = LogisticClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
self.assertEqual(len(slim.get_variables()), 2)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(update_ops, [])
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
optimizer)
self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
self.assertEqual(total_loss.op.name, 'total_loss')
for g, v in grads_and_vars:
self.assertDeviceEqual(g.device, 'GPU:0')
self.assertDeviceEqual(v.device, 'CPU:0')
示例2: testCreateSingleclone
# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import optimize_clones [as 别名]
def testCreateSingleclone(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = BatchNormClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
self.assertEqual(len(slim.get_variables()), 5)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(len(update_ops), 2)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
optimizer)
self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
self.assertEqual(total_loss.op.name, 'total_loss')
for g, v in grads_and_vars:
self.assertDeviceEqual(g.device, 'GPU:0')
self.assertDeviceEqual(v.device, 'CPU:0')
示例3: testCreateLogisticClassifier
# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import optimize_clones [as 别名]
def testCreateLogisticClassifier(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = LogisticClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
self.assertEqual(len(slim.get_variables()), 2)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(update_ops, [])
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
optimizer)
self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
self.assertEqual(total_loss.op.name, 'total_loss')
for g, v in grads_and_vars:
self.assertDeviceEqual(g.device, '')
self.assertDeviceEqual(v.device, 'CPU:0')
示例4: testCreateSingleclone
# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import optimize_clones [as 别名]
def testCreateSingleclone(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = BatchNormClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
self.assertEqual(len(slim.get_variables()), 5)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(len(update_ops), 2)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0)
total_loss, grads_and_vars = model_deploy.optimize_clones(clones,
optimizer)
self.assertEqual(len(grads_and_vars), len(tf.trainable_variables()))
self.assertEqual(total_loss.op.name, 'total_loss')
for g, v in grads_and_vars:
self.assertDeviceEqual(g.device, '')
self.assertDeviceEqual(v.device, 'CPU:0')