当前位置: 首页>>代码示例>>Python>>正文


Python model_deploy.DeploymentConfig方法代码示例

本文整理汇总了Python中deployment.model_deploy.DeploymentConfig方法的典型用法代码示例。如果您正苦于以下问题:Python model_deploy.DeploymentConfig方法的具体用法?Python model_deploy.DeploymentConfig怎么用?Python model_deploy.DeploymentConfig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在deployment.model_deploy的用法示例。


在下文中一共展示了model_deploy.DeploymentConfig方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testPS

# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import DeploymentConfig [as 别名]
def testPS(self):
    deploy_config = model_deploy.DeploymentConfig(num_clones=1, num_ps_tasks=1)

    self.assertDeviceEqual(deploy_config.clone_device(0),
                           '/job:worker/device:GPU:0')
    self.assertEqual(deploy_config.clone_scope(0), '')
    self.assertDeviceEqual(deploy_config.optimizer_device(),
                           '/job:worker/device:CPU:0')
    self.assertDeviceEqual(deploy_config.inputs_device(),
                           '/job:worker/device:CPU:0')
    with tf.device(deploy_config.variables_device()):
      a = tf.Variable(0)
      b = tf.Variable(0)
      c = tf.no_op()
      d = slim.variable('a', [],
                        caching_device=deploy_config.caching_device())
    self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(a.device, a.value().device)
    self.assertDeviceEqual(b.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(b.device, b.value().device)
    self.assertDeviceEqual(c.device, '')
    self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(d.value().device, '') 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:model_deploy_test.py

示例2: testVariablesPS

# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import DeploymentConfig [as 别名]
def testVariablesPS(self):
    deploy_config = model_deploy.DeploymentConfig(num_ps_tasks=2)

    with tf.device(deploy_config.variables_device()):
      a = tf.Variable(0)
      b = tf.Variable(0)
      c = tf.no_op()
      d = slim.variable('a', [],
                        caching_device=deploy_config.caching_device())

    self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(a.device, a.value().device)
    self.assertDeviceEqual(b.device, '/job:ps/task:1/device:CPU:0')
    self.assertDeviceEqual(b.device, b.value().device)
    self.assertDeviceEqual(c.device, '')
    self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0')
    self.assertDeviceEqual(d.value().device, '') 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:model_deploy_test.py

示例3: testCreateLogisticClassifier

# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import DeploymentConfig [as 别名]
def testCreateLogisticClassifier(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = LogisticClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 2)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'LogisticClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(update_ops, []) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:27,代码来源:model_deploy_test.py

示例4: testCreateSingleclone

# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import DeploymentConfig [as 别名]
def testCreateSingleclone(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      model_fn = BatchNormClassifier
      clone_args = (tf_inputs, tf_labels)
      deploy_config = model_deploy.DeploymentConfig(num_clones=1)

      self.assertEqual(slim.get_variables(), [])
      clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
      clone = clones[0]
      self.assertEqual(len(slim.get_variables()), 5)
      for v in slim.get_variables():
        self.assertDeviceEqual(v.device, 'CPU:0')
        self.assertDeviceEqual(v.value().device, 'CPU:0')
      self.assertEqual(clone.outputs.op.name,
                       'BatchNormClassifier/fully_connected/Sigmoid')
      self.assertEqual(clone.scope, '')
      self.assertDeviceEqual(clone.device, 'GPU:0')
      self.assertEqual(len(slim.losses.get_losses()), 1)
      update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
      self.assertEqual(len(update_ops), 2) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:27,代码来源:model_deploy_test.py

示例5: testNoSummariesOnGPU

# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import DeploymentConfig [as 别名]
def testNoSummariesOnGPU(self):
    with tf.Graph().as_default():
      deploy_config = model_deploy.DeploymentConfig(num_clones=2)

      # clone function creates a fully_connected layer with a regularizer loss.
      def ModelFn():
        inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32)
        reg = tf.contrib.layers.l2_regularizer(0.001)
        tf.contrib.layers.fully_connected(inputs, 30, weights_regularizer=reg)

      model = model_deploy.deploy(
          deploy_config, ModelFn,
          optimizer=tf.train.GradientDescentOptimizer(1.0))
      # The model summary op should have a few summary inputs and all of them
      # should be on the CPU.
      self.assertTrue(model.summary_op.op.inputs)
      for inp in  model.summary_op.op.inputs:
        self.assertEqual('/device:CPU:0', inp.device) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:model_deploy_test.py

示例6: testNoSummariesOnGPUForEvals

# 需要导入模块: from deployment import model_deploy [as 别名]
# 或者: from deployment.model_deploy import DeploymentConfig [as 别名]
def testNoSummariesOnGPUForEvals(self):
    with tf.Graph().as_default():
      deploy_config = model_deploy.DeploymentConfig(num_clones=2)

      # clone function creates a fully_connected layer with a regularizer loss.
      def ModelFn():
        inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32)
        reg = tf.contrib.layers.l2_regularizer(0.001)
        tf.contrib.layers.fully_connected(inputs, 30, weights_regularizer=reg)

      # No optimizer here, it's an eval.
      model = model_deploy.deploy(deploy_config, ModelFn)
      # The model summary op should have a few summary inputs and all of them
      # should be on the CPU.
      self.assertTrue(model.summary_op.op.inputs)
      for inp in  model.summary_op.op.inputs:
        self.assertEqual('/device:CPU:0', inp.device) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:model_deploy_test.py


注:本文中的deployment.model_deploy.DeploymentConfig方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。