本文整理汇总了Python中deap.tools.initRepeat方法的典型用法代码示例。如果您正苦于以下问题:Python tools.initRepeat方法的具体用法?Python tools.initRepeat怎么用?Python tools.initRepeat使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类deap.tools
的用法示例。
在下文中一共展示了tools.initRepeat方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _setup_toolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def _setup_toolbox(self):
with warnings.catch_warnings():
warnings.simplefilter('ignore')
creator.create('FitnessMulti', base.Fitness, weights=(-1.0, 1.0))
creator.create('Individual', gp.PrimitiveTree, fitness=creator.FitnessMulti, statistics=dict)
self._toolbox = base.Toolbox()
self._toolbox.register('expr', self._gen_grow_safe, pset=self._pset, min_=self._min, max_=self._max)
self._toolbox.register('individual', tools.initIterate, creator.Individual, self._toolbox.expr)
self._toolbox.register('population', tools.initRepeat, list, self._toolbox.individual)
self._toolbox.register('compile', self._compile_to_sklearn)
self._toolbox.register('select', tools.selNSGA2)
self._toolbox.register('mate', self._mate_operator)
if self.tree_structure:
self._toolbox.register('expr_mut', self._gen_grow_safe, min_=self._min, max_=self._max + 1)
else:
self._toolbox.register('expr_mut', self._gen_grow_safe, min_=self._min, max_=self._max)
self._toolbox.register('mutate', self._random_mutation_operator)
示例2: getGlobalToolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def getGlobalToolbox(representationModule):
# GLOBAL FUNCTION TO GET GLOBAL TBX UNDER DEVELOPMENT;
toolbox = base.Toolbox()
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create(
"Individual",
list,
fitness=creator.FitnessMax,
PromoterMap=None,
Strategy=genconf.Strategy,
)
toolbox.register("mate", representationModule.crossover)
toolbox.register("mutate", representationModule.mutate)
PromoterMap = initPromoterMap(Attributes)
toolbox.register("newind", initInd, creator.Individual, PromoterMap)
toolbox.register("population", tools.initRepeat, list, toolbox.newind)
toolbox.register("constructPhenotype", representationModule.constructPhenotype)
return toolbox
示例3: init_deap_functions
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def init_deap_functions(self):
creator.create("Fitness", base.Fitness, weights=self.weights)
creator.create("Individual", list, fitness=creator.Fitness)
self.toolbox = base.Toolbox()
self.toolbox.register("individual", tools.initIterate, creator.Individual, self.generate_ind)
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
self.toolbox.register("evaluate", self.fit_func)
if self.penalty != None:
self.toolbox.decorate("evaluate", tools.DeltaPenality(self.feasible, self.inf_val))
示例4: create_toolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def create_toolbox(self):
"""OptiGenAlgNsga2Deap method to create DEAP toolbox
Parameters
----------
self : OptiGenAlgNsga2Deap
Returns
-------
self : OptiGenAlgNsga2Deap
OptiGenAlgNsga2Deap with toolbox created
"""
# Create toolbox
self.toolbox = base.Toolbox()
# Create Fitness and individual
creator.create(
"FitnessMin", base.Fitness, weights=[-1 for _ in self.problem.design_var]
)
creator.create("Individual", list, typecode="d", fitness=creator.FitnessMin)
self.toolbox.register("creator", creator.Individual)
# Register individual and population
self.toolbox.register(
"individual",
create_indiv,
self.toolbox.creator,
self.problem.output,
self.problem.design_var,
)
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
示例5: geneticAlgorithm
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def geneticAlgorithm(X, y, n_population, n_generation):
"""
Deap global variables
Initialize variables to use eaSimple
"""
# create individual
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# create toolbox
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat,
creator.Individual, toolbox.attr_bool, len(X.columns))
toolbox.register("population", tools.initRepeat, list,
toolbox.individual)
toolbox.register("evaluate", getFitness, X=X, y=y)
toolbox.register("mate", tools.cxOnePoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# initialize parameters
pop = toolbox.population(n=n_population)
hof = tools.HallOfFame(n_population * n_generation)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)
# genetic algorithm
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
ngen=n_generation, stats=stats, halloffame=hof,
verbose=True)
# return hall of fame
return hof
示例6: create_toolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def create_toolbox(num_bits):
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# Initialize the toolbox
toolbox = base.Toolbox()
# Generate attributes
toolbox.register("attr_bool", random.randint, 0, 1)
# Initialize structures
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attr_bool, num_bits)
# Define the population to be a list of individuals
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# Register the evaluation operator
toolbox.register("evaluate", eval_func)
# Register the crossover operator
toolbox.register("mate", tools.cxTwoPoint)
# Register a mutation operator
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
# Operator for selecting individuals for breeding
toolbox.register("select", tools.selTournament, tournsize=3)
return toolbox
示例7: create_toolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def create_toolbox():
pset = gp.PrimitiveSet("MAIN", 1)
pset.addPrimitive(operator.add, 2)
pset.addPrimitive(operator.sub, 2)
pset.addPrimitive(operator.mul, 2)
pset.addPrimitive(division_operator, 2)
pset.addPrimitive(operator.neg, 1)
pset.addPrimitive(math.cos, 1)
pset.addPrimitive(math.sin, 1)
pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))
pset.renameArguments(ARG0='x')
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("compile", gp.compile, pset=pset)
toolbox.register("evaluate", eval_func, points=[x/10. for x in range(-10,10)])
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
return toolbox
示例8: create_toolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def create_toolbox():
global robot, pset
pset = gp.PrimitiveSet("MAIN", 0)
pset.addPrimitive(robot.if_target_ahead, 2)
pset.addPrimitive(Prog().prog2, 2)
pset.addPrimitive(Prog().prog3, 3)
pset.addTerminal(robot.move_forward)
pset.addTerminal(robot.turn_left)
pset.addTerminal(robot.turn_right)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
# Attribute generator
toolbox.register("expr_init", gp.genFull, pset=pset, min_=1, max_=2)
# Structure initializers
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr_init)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", eval_func)
toolbox.register("select", tools.selTournament, tournsize=7)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
return toolbox
示例9: getToolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def getToolbox(Strategy, genconf, Attributes):
toolbox = base.Toolbox()
creator = Creator.init(base.Fitness, {'Strategy': Strategy})
toolbox.register("newind", initInd, creator.Individual, Attributes)
toolbox.register("population", tools.initRepeat, list, toolbox.newind)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutUniformInt, low=10, up=10, indpb=0.2)
toolbox.register("constructPhenotype", constructPhenotype, Attributes)
return toolbox
示例10: getToolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def getToolbox(Strategy, genconf, Attributes):
toolbox = base.Toolbox()
creator = Creator.init(base.Fitness, {'promoterMap': None, 'Strategy': Strategy})
# creator.create("FitnessMax", base.Fitness, weights=(1.0, 3))
toolbox.register("mate", pachytene)
toolbox.register("mutate", mutate)
PromoterMap = initPromoterMap(Attributes)
toolbox.register(
"newind", initInd, creator.Individual, PromoterMap, genconf.chromosome
)
toolbox.register("population", tools.initRepeat, list, toolbox.newind)
toolbox.register(
"constructPhenotype", constructPhenotype, Attributes, genconf.chromosome
)
return toolbox
示例11: get_toolbox
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def get_toolbox(self, predictors, response, pset, variable_type_indices, variable_names):
subset_size = int(math.floor(predictors.shape[0] * self.subset_proportion))
creator.create("Error", base.Fitness, weights=(-1.0,))
creator.create("Individual", sp.SimpleParametrizedPrimitiveTree, fitness=creator.Error, age=int)
toolbox = base.Toolbox()
toolbox.register("expr", sp.generate_parametrized_expression,
partial(gp.genHalfAndHalf, pset=pset, min_=self.min_depth_init, max_=self.max_depth_init),
variable_type_indices, variable_names)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("compile", gp.compile, pset=pset)
toolbox.register("grow", sp.generate_parametrized_expression,
partial(gp.genGrow, pset=pset, min_=self.min_gen_grow, max_=self.max_gen_grow),
variable_type_indices, variable_names)
toolbox.register("mutate", operators.mutation_biased, expr=toolbox.grow,
node_selector=operators.uniform_depth_node_selector)
toolbox.decorate("mutate", operators.static_limit(key=operator.attrgetter("height"), max_value=self.max_height))
toolbox.decorate("mutate", operators.static_limit(key=len, max_value=self.max_size))
# self.history = tools.History()
# toolbox.decorate("mutate", self.history.decorator)
toolbox.register("error_func", self.error_function)
expression_dict = cachetools.LRUCache(maxsize=1000)
subset_selection_archive = subset_selection.RandomSubsetSelectionArchive(frequency=self.subset_change_frequency,
predictors=predictors,
response=response,
subset_size=subset_size,
expression_dict=expression_dict)
evaluate_function = partial(subset_selection.fast_numpy_evaluate_subset,
get_node_semantics=sp.get_node_semantics,
context=pset.context,
subset_selection_archive=subset_selection_archive,
error_function=toolbox.error_func,
expression_dict=expression_dict)
toolbox.register("evaluate_error", evaluate_function)
self.multi_archive = utils.get_archive(100)
if self.log_mutate:
mutation_stats_archive = archive.MutationStatsArchive(evaluate_function)
toolbox.decorate("mutate", operators.stats_collector(archive=mutation_stats_archive))
self.multi_archive.archives.append(mutation_stats_archive)
self.multi_archive.archives.append(subset_selection_archive)
self.mstats = reports.configure_parametrized_inf_protected_stats()
self.pop = toolbox.population(n=self.pop_size)
toolbox.register("run", truncation_with_elite.optimize, population=self.pop, toolbox=toolbox,
ngen=self.ngen, stats=self.mstats, archive=self.multi_archive, verbose=False,
history=None)
# history=self.history)
toolbox.register("save", reports.save_log_to_csv)
toolbox.decorate("save", reports.save_archive(self.multi_archive))
return toolbox
示例12: runOptGenetic
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def runOptGenetic():
'''
@return:
@rtype:
'''
# COULDDO parametrisation
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
IND_SIZE = num_slots * num_evs
POP_SIZE = 30
toolbox = base.Toolbox()
toolbox.register("attr_float", rd.random) # COULDDO heuristic init
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=IND_SIZE)
toolbox.register("population", tools.initRepeat, list, toolbox.individual, n=POP_SIZE)
toolbox.register("evaluate", evaluate)
toolbox.decorate("evaluate", tools.DeltaPenalty(feasible, 0.0, distance))
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.5, indpb=0.5)
toolbox.register("select", tools.selTournament, tournsize=3)
stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
hof = tools.HallOfFame(1)
population = toolbox.population()
# if no of-the-shelf algorithm used...
# fits = toolbox.map(toolbox.evaluate, population)
# for fit, ind in zip(fits, population):
# ind.fitness.values = fit
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.3, ngen=5, stats=stats, verbose=True, halloffame=hof)
sorted_pop = sorted(population, key=lambda ind: ind.fitness)
ev_schedules = np.asarray(best).reshape((num_evs, num_slots))
schedules = np.zeros((num_households, num_slots)).tolist()
for i in range(num_evs):
schedules[evs[i].position] = ev_schedules[i].tolist()
evs[i].schedule = schedules[evs[i].position]
return schedules
# *****************************************************************************************************
# * Metaheuristics Side Functions
# *****************************************************************************************************
# UNUSED
示例13: test_nsga2
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def test_nsga2():
NDIM = 5
BOUND_LOW, BOUND_UP = 0.0, 1.0
MU = 16
NGEN = 100
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, BOUND_LOW, BOUND_UP)
toolbox.register("individual", tools.initRepeat, creator.__dict__[INDCLSNAME], toolbox.attr_float, NDIM)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", benchmarks.zdt1)
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0)
toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM)
toolbox.register("select", tools.selNSGA2)
pop = toolbox.population(n=MU)
fitnesses = toolbox.map(toolbox.evaluate, pop)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
pop = toolbox.select(pop, len(pop))
for gen in range(1, NGEN):
offspring = tools.selTournamentDCD(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
if random.random() <= 0.9:
toolbox.mate(ind1, ind2)
toolbox.mutate(ind1)
toolbox.mutate(ind2)
del ind1.fitness.values, ind2.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
pop = toolbox.select(pop + offspring, MU)
hv = hypervolume(pop, [11.0, 11.0])
# hv = 120.777 # Optimal value
assert hv > HV_THRESHOLD, "Hypervolume is lower than expected %f < %f" % (hv, HV_THRESHOLD)
for ind in pop:
assert not (any(numpy.asarray(ind) < BOUND_LOW) or any(numpy.asarray(ind) > BOUND_UP))
示例14: test_nsga3
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import initRepeat [as 别名]
def test_nsga3():
NDIM = 5
BOUND_LOW, BOUND_UP = 0.0, 1.0
MU = 16
NGEN = 100
ref_points = tools.uniform_reference_points(2, p=12)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, BOUND_LOW, BOUND_UP)
toolbox.register("individual", tools.initRepeat, creator.__dict__[INDCLSNAME], toolbox.attr_float, NDIM)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", benchmarks.zdt1)
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0)
toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM)
toolbox.register("select", tools.selNSGA3, ref_points=ref_points)
pop = toolbox.population(n=MU)
fitnesses = toolbox.map(toolbox.evaluate, pop)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
pop = toolbox.select(pop, len(pop))
# Begin the generational process
for gen in range(1, NGEN):
offspring = algorithms.varAnd(pop, toolbox, 1.0, 1.0)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Select the next generation population
pop = toolbox.select(pop + offspring, MU)
hv = hypervolume(pop, [11.0, 11.0])
# hv = 120.777 # Optimal value
assert hv > HV_THRESHOLD, "Hypervolume is lower than expected %f < %f" % (hv, HV_THRESHOLD)
for ind in pop:
assert not (any(numpy.asarray(ind) < BOUND_LOW) or any(numpy.asarray(ind) > BOUND_UP))