本文整理汇总了Python中deap.tools.Logbook方法的典型用法代码示例。如果您正苦于以下问题:Python tools.Logbook方法的具体用法?Python tools.Logbook怎么用?Python tools.Logbook使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类deap.tools
的用法示例。
在下文中一共展示了tools.Logbook方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main():
pop = toolbox.population(n=5)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
GEN = 1000
best = None
for g in range(GEN):
for part in pop:
part.fitness.values = toolbox.evaluate(part)
if part.best is None or part.best.fitness < part.fitness:
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values
if best is None or best.fitness < part.fitness:
best = creator.Particle(part)
best.fitness.values = part.fitness.values
for part in pop:
toolbox.update(part, best)
# Gather all the fitnesses in one list and print the stats
logbook.record(gen=g, evals=len(pop), **stats.compile(pop))
print(logbook.stream)
return pop, logbook, best
示例2: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main():
pop = toolbox.population(n=5)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
GEN = 1000
best = None
for g in range(GEN):
for part in pop:
part.fitness.values = toolbox.evaluate(part)
if not part.best or part.best.fitness < part.fitness:
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values
if not best or best.fitness < part.fitness:
best = creator.Particle(part)
best.fitness.values = part.fitness.values
for part in pop:
toolbox.update(part, best)
# Gather all the fitnesses in one list and print the stats
logbook.record(gen=g, evals=len(pop), **stats.compile(pop))
print(logbook.stream)
return pop, logbook, best
示例3: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main():
"""Implements the One-Fifth rule algorithm as expressed in :
Kern, S., S.D. Muller, N. Hansen, D. Buche, J. Ocenasek and P. Koumoutsakos (2004).
Learning Probability Distributions in Continuous Evolutionary Algorithms -
A Comparative Review. Natural Computing, 3(1), pp. 77-112.
However instead of parent and offspring the algorithm is expressed in terms of
best and worst. Best is equivalent to the parent, and worst to the offspring.
Instead of producing a new individual each time, we have defined a function which
updates the worst individual using the best one as the mean of the gaussian and
the sigma computed as the standard deviation.
"""
random.seed(64)
logbook = tools.Logbook()
logbook.header = "gen", "fitness"
interval = (-3,7)
mu = (random.uniform(interval[0], interval[1]) for _ in range(IND_SIZE))
sigma = (interval[1] - interval[0])/2.0
alpha = 2.0**(1.0/IND_SIZE)
best = creator.Individual(mu)
best.fitness.values = toolbox.evaluate(best)
worst = creator.Individual((0.0,)*IND_SIZE)
NGEN = 1500
for g in range(NGEN):
toolbox.update(worst, best, sigma)
worst.fitness.values = toolbox.evaluate(worst)
if best.fitness <= worst.fitness:
sigma = sigma * alpha
best, worst = worst, best
else:
sigma = sigma * alpha**(-0.25)
logbook.record(gen=g, fitness=best.fitness.values)
print(logbook.stream)
return best
示例4: setUp
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def setUp(self):
self.logbook = tools.Logbook()
print
示例5: test_pickle_logbook
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def test_pickle_logbook(self):
stats = tools.Statistics()
logbook = tools.Logbook()
stats.register("mean", numpy.mean)
record = stats.compile([1,2,3,4,5,6,8,9,10])
logbook.record(**record)
logbook_s = pickle.dumps(logbook)
logbook_r = pickle.loads(logbook_s)
self.assertEqual(logbook, logbook_r, "Unpickled logbook != pickled logbook")
示例6: varOr
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def varOr(population, toolbox, lambda_, cxpb, mutpb):
"""Part of an evolutionary algorithm applying only the variation part
(crossover, mutation **or** reproduction). The modified individuals have
their fitness invalidated. The individuals are cloned so returned
population is independent of the input population.
:param population: A list of individuals to vary.
:param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution
operators.
:param lambda\_: The number of children to produce
:param cxpb: The probability of mating two individuals.
:param mutpb: The probability of mutating an individual.
:returns: The final population
:returns: A class:`~deap.tools.Logbook` with the statistics of the
evolution
The variation goes as follow. On each of the *lambda_* iteration, it
selects one of the three operations; crossover, mutation or reproduction.
In the case of a crossover, two individuals are selected at random from
the parental population :math:`P_\mathrm{p}`, those individuals are cloned
using the :meth:`toolbox.clone` method and then mated using the
:meth:`toolbox.mate` method. Only the first child is appended to the
offspring population :math:`P_\mathrm{o}`, the second child is discarded.
In the case of a mutation, one individual is selected at random from
:math:`P_\mathrm{p}`, it is cloned and then mutated using using the
:meth:`toolbox.mutate` method. The resulting mutant is appended to
:math:`P_\mathrm{o}`. In the case of a reproduction, one individual is
selected at random from :math:`P_\mathrm{p}`, cloned and appended to
:math:`P_\mathrm{o}`.
This variation is named *Or* beceause an offspring will never result from
both operations crossover and mutation. The sum of both probabilities
shall be in :math:`[0, 1]`, the reproduction probability is
1 - *cxpb* - *mutpb*.
"""
offspring = []
for _ in range(lambda_):
op_choice = np.random.random()
if op_choice < cxpb: # Apply crossover
ind1, ind2 = pick_two_individuals_eligible_for_crossover(population)
if ind1 is not None:
ind1, _ = toolbox.mate(ind1, ind2)
del ind1.fitness.values
else:
# If there is no pair eligible for crossover, we still want to
# create diversity in the population, and do so by mutation instead.
ind1 = mutate_random_individual(population, toolbox)
offspring.append(ind1)
elif op_choice < cxpb + mutpb: # Apply mutation
ind = mutate_random_individual(population, toolbox)
offspring.append(ind)
else: # Apply reproduction
idx = np.random.randint(0, len(population))
offspring.append(toolbox.clone(population[idx]))
return offspring
示例7: eaSimpleWithElitism
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def eaSimpleWithElitism(population, toolbox, cxpb, mutpb, ngen, stats=None,
halloffame=None, verbose=__debug__):
"""This algorithm is similar to DEAP eaSimple() algorithm, with the modification that
halloffame is used to implement an elitism mechanism. The individuals contained in the
halloffame are directly injected into the next generation and are not subject to the
genetic operators of selection, crossover and mutation.
"""
logbook = tools.Logbook()
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
if halloffame is None:
raise ValueError("halloffame parameter must not be empty!")
halloffame.update(population)
hof_size = len(halloffame.items) if halloffame.items else 0
record = stats.compile(population) if stats else {}
logbook.record(gen=0, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
# Begin the generational process
for gen in range(1, ngen + 1):
# Select the next generation individuals
offspring = toolbox.select(population, len(population) - hof_size)
# Vary the pool of individuals
offspring = algorithms.varAnd(offspring, toolbox, cxpb, mutpb)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# add the best back to population:
offspring.extend(halloffame.items)
# Update the hall of fame with the generated individuals
halloffame.update(offspring)
# Replace the current population by the offspring
population[:] = offspring
# Append the current generation statistics to the logbook
record = stats.compile(population) if stats else {}
logbook.record(gen=gen, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
return population, logbook
示例8: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main():
# create the population of particle population:
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("min", np.min)
stats.register("avg", np.mean)
logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
best = None
for generation in range(MAX_GENERATIONS):
# evaluate all particles in polulation:
for particle in population:
# find the fitness of the particle:
particle.fitness.values = toolbox.evaluate(particle)
# particle best needs to be updated:
if particle.best is None or particle.best.size == 0 or particle.best.fitness < particle.fitness:
particle.best = creator.Particle(particle)
particle.best.fitness.values = particle.fitness.values
# global best needs to be updated:
if best is None or best.size == 0 or best.fitness < particle.fitness:
best = creator.Particle(particle)
best.fitness.values = particle.fitness.values
# update each particle's speed and position:
for particle in population:
toolbox.update(particle, best)
# record the statistics for the current generation and print it:
logbook.record(gen=generation, evals=len(population), **stats.compile(population))
print(logbook.stream)
# print info for best solution found:
print("-- Best Particle = ", best)
print("-- Best Fitness = ", best.fitness.values[0])
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:45,代码来源:03-pso-himmelblau.py
示例9: eaSimpleModified
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def eaSimpleModified(population, toolbox, cxpb, mutpb, ngen, stats=None,
halloffame=None, verbose=__debug__):
logbook = tools.Logbook()
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
if halloffame is not None:
halloffame.update(population)
record = stats.compile(population) if stats else {}
logbook.record(gen=0, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
best = []
best_ind = max(population, key=attrgetter("fitness"))
best.append(best_ind)
# Begin the generational process
for gen in range(1, ngen + 1):
# Select the next generation individuals
offspring = toolbox.select(population, len(population))
# Vary the pool of individuals
offspring = algorithms.varAnd(offspring, toolbox, cxpb, mutpb)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Save the best individual from the generation
best_ind = max(offspring, key=attrgetter("fitness"))
best.append(best_ind)
# Update the hall of fame with the generated individuals
if halloffame is not None:
halloffame.update(offspring)
# Replace the current population by the offspring
population[:] = offspring
# Append the current generation statistics to the logbook
record = stats.compile(population) if stats else {}
logbook.record(gen=gen, nevals=len(invalid_ind), **record)
if verbose:
print(logbook.stream)
return population, logbook, best
示例10: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main():
# Differential evolution parameters
MU = NDIM * 10
NGEN = 200
pop = toolbox.population(n=MU);
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
# Evaluate the individuals
fitnesses = toolbox.map(toolbox.evaluate, pop)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
record = stats.compile(pop)
logbook.record(gen=0, evals=len(pop), **record)
print(logbook.stream)
for g in range(1, NGEN):
children = []
for agent in pop:
# We must clone everything to ensure independance
a, b, c = [toolbox.clone(ind) for ind in toolbox.select(pop)]
x = toolbox.clone(agent)
y = toolbox.clone(agent)
y = toolbox.mutate(y, a, b, c)
z = toolbox.mate(x, y)
del z.fitness.values
children.append(z)
fitnesses = toolbox.map(toolbox.evaluate, children)
for (i, ind), fit in zip(enumerate(children), fitnesses):
ind.fitness.values = fit
if ind.fitness > pop[i].fitness:
pop[i] = ind
hof.update(pop)
record = stats.compile(pop)
logbook.record(gen=g, evals=len(pop), **record)
print(logbook.stream)
print("Best individual is ", hof[0])
print("with fitness", hof[0].fitness.values[0])
return logbook
示例11: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main():
# Differential evolution parameters
CR = 0.25
F = 1
MU = 300
NGEN = 200
pop = toolbox.population(n=MU);
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
# Evaluate the individuals
fitnesses = toolbox.map(toolbox.evaluate, pop)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
record = stats.compile(pop)
logbook.record(gen=0, evals=len(pop), **record)
print(logbook.stream)
for g in range(1, NGEN):
for k, agent in enumerate(pop):
a,b,c = toolbox.select(pop)
y = toolbox.clone(agent)
index = random.randrange(NDIM)
for i, value in enumerate(agent):
if i == index or random.random() < CR:
y[i] = a[i] + F*(b[i]-c[i])
y.fitness.values = toolbox.evaluate(y)
if y.fitness > agent.fitness:
pop[k] = y
hof.update(pop)
record = stats.compile(pop)
logbook.record(gen=g, evals=len(pop), **record)
print(logbook.stream)
print("Best individual is ", hof[0], hof[0].fitness.values[0])
示例12: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main(seed=None):
random.seed(seed)
# Initialize statistics object
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
pop = toolbox.population(n=MU)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in pop if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Compile statistics about the population
record = stats.compile(pop)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
# Begin the generational process
for gen in range(1, NGEN):
offspring = algorithms.varAnd(pop, toolbox, CXPB, MUTPB)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Select the next generation population from parents and offspring
pop = toolbox.select(pop + offspring, MU)
# Compile statistics about the new population
record = stats.compile(pop)
logbook.record(gen=gen, evals=len(invalid_ind), **record)
print(logbook.stream)
return pop, logbook
示例13: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main(seed=None):
random.seed(seed)
NGEN = 250
MU = 100
CXPB = 0.9
stats = tools.Statistics(lambda ind: ind.fitness.values)
# stats.register("avg", numpy.mean, axis=0)
# stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
pop = toolbox.population(n=MU)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in pop if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# This is just to assign the crowding distance to the individuals
# no actual selection is done
pop = toolbox.select(pop, len(pop))
record = stats.compile(pop)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
# Begin the generational process
for gen in range(1, NGEN):
# Vary the population
offspring = tools.selTournamentDCD(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
if random.random() <= CXPB:
toolbox.mate(ind1, ind2)
toolbox.mutate(ind1)
toolbox.mutate(ind2)
del ind1.fitness.values, ind2.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Select the next generation population
pop = toolbox.select(pop + offspring, MU)
record = stats.compile(pop)
logbook.record(gen=gen, evals=len(invalid_ind), **record)
print(logbook.stream)
print("Final population hypervolume is %f" % hypervolume(pop, [11.0, 11.0]))
return pop, logbook
示例14: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main():
random.seed(64)
NBR_DEMES = 3
MU = 300
NGEN = 40
CXPB = 0.5
MUTPB = 0.2
MIG_RATE = 5
demes = [toolbox.population(n=MU) for _ in range(NBR_DEMES)]
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "deme", "evals", "std", "min", "avg", "max"
for idx, deme in enumerate(demes):
for ind in deme:
ind.fitness.values = toolbox.evaluate(ind)
logbook.record(gen=0, deme=idx, evals=len(deme), **stats.compile(deme))
hof.update(deme)
print(logbook.stream)
gen = 1
while gen <= NGEN and logbook[-1]["max"] < 100.0:
for idx, deme in enumerate(demes):
deme[:] = toolbox.select(deme, len(deme))
deme[:] = algorithms.varAnd(deme, toolbox, cxpb=CXPB, mutpb=MUTPB)
invalid_ind = [ind for ind in deme if not ind.fitness.valid]
for ind in invalid_ind:
ind.fitness.values = toolbox.evaluate(ind)
logbook.record(gen=gen, deme=idx, evals=len(deme), **stats.compile(deme))
hof.update(deme)
print(logbook.stream)
if gen % MIG_RATE == 0:
toolbox.migrate(demes)
gen += 1
return demes, logbook, hof
示例15: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import Logbook [as 别名]
def main(extended=True, verbose=True):
target_set = []
species = []
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = "gen", "species", "evals", "std", "min", "avg", "max"
ngen = 200
g = 0
schematas = nicheSchematas(TARGET_TYPE, IND_SIZE)
for i in range(TARGET_TYPE):
size = int(TARGET_SIZE/TARGET_TYPE)
target_set.extend(toolbox.target_set(schematas[i], size))
species.append(toolbox.species())
# Init with a random representative for each species
representatives = [random.choice(s) for s in species]
while g < ngen:
# Initialize a container for the next generation representatives
next_repr = [None] * len(species)
for i, s in enumerate(species):
# Vary the species individuals
s = algorithms.varAnd(s, toolbox, 0.6, 1.0)
# Get the representatives excluding the current species
r = representatives[:i] + representatives[i+1:]
for ind in s:
ind.fitness.values = toolbox.evaluate([ind] + r, target_set)
record = stats.compile(s)
logbook.record(gen=g, species=i, evals=len(s), **record)
if verbose:
print(logbook.stream)
# Select the individuals
species[i] = toolbox.select(s, len(s)) # Tournament selection
next_repr[i] = toolbox.get_best(s)[0] # Best selection
g += 1
representatives = next_repr
if extended:
for r in representatives:
print("".join(str(x) for x in r))