本文整理汇总了Python中deap.tools.HallOfFame方法的典型用法代码示例。如果您正苦于以下问题:Python tools.HallOfFame方法的具体用法?Python tools.HallOfFame怎么用?Python tools.HallOfFame使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类deap.tools
的用法示例。
在下文中一共展示了tools.HallOfFame方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
random.seed(169)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.7, 0.2, 40, stats=stats,
halloffame=hof)
return pop, stats, hof
示例2: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
random.seed(64)
pop = toolbox.population(n=300)
# Numpy equality function (operators.eq) between two arrays returns the
# equality element wise, which raises an exception in the if similar()
# check of the hall of fame. Using a different equality function like
# numpy.array_equal or numpy.allclose solve this issue.
hof = tools.HallOfFame(1, similar=numpy.array_equal)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40, stats=stats,
halloffame=hof)
return pop, stats, hof
示例3: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
numpy.random.seed()
# The CMA-ES One Plus Lambda algorithm takes a initialized parent as argument
parent = creator.Individual((numpy.random.rand() * 5) - 1 for _ in range(N))
parent.fitness.values = toolbox.evaluate(parent)
strategy = cma.StrategyOnePlusLambda(parent, sigma=5.0, lambda_=10)
toolbox.register("generate", strategy.generate, ind_init=creator.Individual)
toolbox.register("update", strategy.update)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaGenerateUpdate(toolbox, ngen=200, halloffame=hof, stats=stats)
示例4: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
random.seed(69)
with open("ant/santafe_trail.txt") as trail_file:
ant.parse_matrix(trail_file)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 40, stats, halloffame=hof)
return pop, hof, stats
示例5: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
#random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof
示例6: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof
示例7: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = gp.harm(pop, toolbox, 0.5, 0.1, 40, alpha=0.05, beta=10, gamma=0.25, rho=0.9, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof
示例8: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
N, LAMBDA = 30, 1000
MU = int(LAMBDA/4)
strategy = EMNA(centroid=[5.0]*N, sigma=5.0, mu=MU, lambda_=LAMBDA)
toolbox = base.Toolbox()
toolbox.register("evaluate", benchmarks.sphere)
toolbox.register("generate", strategy.generate, creator.Individual)
toolbox.register("update", strategy.update)
# Numpy equality function (operators.eq) between two arrays returns the
# equality element wise, which raises an exception in the if similar()
# check of the hall of fame. Using a different equality function like
# numpy.array_equal or numpy.allclose solve this issue.
hof = tools.HallOfFame(1, similar=numpy.array_equal)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaGenerateUpdate(toolbox, ngen=150, stats=stats, halloffame=hof)
return hof[0].fitness.values[0]
示例9: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
random.seed(64)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,
stats=stats, halloffame=hof, verbose=True)
return pop, log, hof
示例10: geneticAlgorithm
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def geneticAlgorithm(X, y, n_population, n_generation):
"""
Deap global variables
Initialize variables to use eaSimple
"""
# create individual
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# create toolbox
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat,
creator.Individual, toolbox.attr_bool, len(X.columns))
toolbox.register("population", tools.initRepeat, list,
toolbox.individual)
toolbox.register("evaluate", getFitness, X=X, y=y)
toolbox.register("mate", tools.cxOnePoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# initialize parameters
pop = toolbox.population(n=n_population)
hof = tools.HallOfFame(n_population * n_generation)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)
# genetic algorithm
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
ngen=n_generation, stats=stats, halloffame=hof,
verbose=True)
# return hall of fame
return hof
示例11: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("min", np.min)
stats.register("avg", np.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with elitism:
population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)
# print info for best solution found:
best = hof.items[0]
print("-- Best Individual = ", best)
print("-- Best Fitness = ", best.fitness.values[0])
# extract statistics:
minFitnessValues, meanFitnessValues = logbook.select("min", "avg")
# plot statistics:
sns.set_style("whitegrid")
plt.plot(minFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Min / Average Fitness')
plt.title('Min and Average fitness over Generations')
plt.show()
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:36,代码来源:04-optimize-simionescu.py
示例12: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("min", np.min)
stats.register("avg", np.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with hof feature added:
population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)
# print best individual info:
best = hof.items[0]
print("-- Best Ever Individual = ", best)
print("-- Best Ever Fitness = ", best.fitness.values[0])
# plot best solution:
plt.figure(1)
tsp.plotData(best)
# plot statistics:
minFitnessValues, meanFitnessValues = logbook.select("min", "avg")
plt.figure(2)
sns.set_style("whitegrid")
plt.plot(minFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Min / Average Fitness')
plt.title('Min and Average fitness over Generations')
# show both plots:
plt.show()
示例13: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("min", np.min)
stats.register("avg", np.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with hof feature added:
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)
# print best individual info:
best = hof.items[0]
print("-- Best Ever Individual = ", best)
print("-- Best Ever Fitness = ", best.fitness.values[0])
# plot best solution:
plt.figure(1)
tsp.plotData(best)
# plot statistics:
minFitnessValues, meanFitnessValues = logbook.select("min", "avg")
plt.figure(2)
sns.set_style("whitegrid")
plt.plot(minFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Min / Average Fitness')
plt.title('Min and Average fitness over Generations')
# show both plots:
plt.show()
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:40,代码来源:02-solve-tsp-first-attempt.py
示例14: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("max", numpy.max)
stats.register("avg", numpy.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with hof feature added:
population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)
# print best solution found:
best = hof.items[0]
print("-- Best Ever Individual = ", best)
print("-- Best Ever Fitness = ", best.fitness.values[0])
print("-- Knapsack Items = ")
knapsack.printItems(best)
# extract statistics:
maxFitnessValues, meanFitnessValues = logbook.select("max", "avg")
# plot statistics:
sns.set_style("whitegrid")
plt.plot(maxFitnessValues, color='red')
plt.plot(meanFitnessValues, color='green')
plt.xlabel('Generation')
plt.ylabel('Max / Average Fitness')
plt.title('Max and Average fitness over Generations')
plt.show()
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:38,代码来源:01-solve-knapsack.py
示例15: main
# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
# create initial population (generation 0):
population = toolbox.populationCreator(n=POPULATION_SIZE)
# prepare the statistics object:
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("max", numpy.max)
stats.register("avg", numpy.mean)
# define the hall-of-fame object:
hof = tools.HallOfFame(HALL_OF_FAME_SIZE)
# perform the Genetic Algorithm flow with hof feature added:
population, logbook = elitism.eaSimpleWithElitism(population,
toolbox,
cxpb=P_CROSSOVER,
mutpb=P_MUTATION,
ngen=MAX_GENERATIONS,
stats=stats,
halloffame=hof,
verbose=True)
# print best solution found:
print("- Best solution is: ",
test.formatParams(hof.items[0]),
", accuracy = ",
hof.items[0].fitness.values[0])
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:30,代码来源:01-optimize-mlp-layers.py