当前位置: 首页>>代码示例>>Python>>正文


Python tools.HallOfFame方法代码示例

本文整理汇总了Python中deap.tools.HallOfFame方法的典型用法代码示例。如果您正苦于以下问题:Python tools.HallOfFame方法的具体用法?Python tools.HallOfFame怎么用?Python tools.HallOfFame使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在deap.tools的用法示例。


在下文中一共展示了tools.HallOfFame方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    random.seed(169)

    pop = toolbox.population(n=300)

    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaSimple(pop, toolbox, 0.7, 0.2, 40, stats=stats, 
                        halloffame=hof)
    
    return pop, stats, hof 
开发者ID:DEAP,项目名称:deap,代码行数:18,代码来源:tsp.py

示例2: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    random.seed(64)
    
    pop = toolbox.population(n=300)
    
    # Numpy equality function (operators.eq) between two arrays returns the
    # equality element wise, which raises an exception in the if similar()
    # check of the hall of fame. Using a different equality function like
    # numpy.array_equal or numpy.allclose solve this issue.
    hof = tools.HallOfFame(1, similar=numpy.array_equal)
    
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40, stats=stats,
                        halloffame=hof)

    return pop, stats, hof 
开发者ID:DEAP,项目名称:deap,代码行数:23,代码来源:onemax_numpy.py

示例3: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    numpy.random.seed()

    # The CMA-ES One Plus Lambda algorithm takes a initialized parent as argument
    parent = creator.Individual((numpy.random.rand() * 5) - 1 for _ in range(N))
    parent.fitness.values = toolbox.evaluate(parent)
    
    strategy = cma.StrategyOnePlusLambda(parent, sigma=5.0, lambda_=10)
    toolbox.register("generate", strategy.generate, ind_init=creator.Individual)
    toolbox.register("update", strategy.update)

    hof = tools.HallOfFame(1)    
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
   
    algorithms.eaGenerateUpdate(toolbox, ngen=200, halloffame=hof, stats=stats) 
开发者ID:DEAP,项目名称:deap,代码行数:21,代码来源:cma_1+l_minfct.py

示例4: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    random.seed(69)
    
    with  open("ant/santafe_trail.txt") as trail_file:
      ant.parse_matrix(trail_file)
    
    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 40, stats, halloffame=hof)
    
    return pop, hof, stats 
开发者ID:DEAP,项目名称:deap,代码行数:19,代码来源:ant.py

示例5: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    #random.seed(318)

    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    
    stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
    stats_size = tools.Statistics(len)
    mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)

    pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
                                   halloffame=hof, verbose=True)
    # print log
    return pop, log, hof 
开发者ID:DEAP,项目名称:deap,代码行数:20,代码来源:symbreg_epsilon_lexicase.py

示例6: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    random.seed(318)

    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    
    stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
    stats_size = tools.Statistics(len)
    mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)

    pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
                                   halloffame=hof, verbose=True)
    # print log
    return pop, log, hof 
开发者ID:DEAP,项目名称:deap,代码行数:20,代码来源:symbreg.py

示例7: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    random.seed(318)

    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    
    stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
    stats_size = tools.Statistics(len)
    mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)

    pop, log = gp.harm(pop, toolbox, 0.5, 0.1, 40, alpha=0.05, beta=10, gamma=0.25, rho=0.9, stats=mstats,
                                   halloffame=hof, verbose=True)
    # print log
    return pop, log, hof 
开发者ID:DEAP,项目名称:deap,代码行数:20,代码来源:symbreg_harm.py

示例8: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    N, LAMBDA = 30, 1000
    MU = int(LAMBDA/4)
    strategy = EMNA(centroid=[5.0]*N, sigma=5.0, mu=MU, lambda_=LAMBDA)
    
    toolbox = base.Toolbox()
    toolbox.register("evaluate", benchmarks.sphere)
    toolbox.register("generate", strategy.generate, creator.Individual)
    toolbox.register("update", strategy.update)
    
    # Numpy equality function (operators.eq) between two arrays returns the
    # equality element wise, which raises an exception in the if similar()
    # check of the hall of fame. Using a different equality function like
    # numpy.array_equal or numpy.allclose solve this issue.
    hof = tools.HallOfFame(1, similar=numpy.array_equal)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    algorithms.eaGenerateUpdate(toolbox, ngen=150, stats=stats, halloffame=hof)
    
    return hof[0].fitness.values[0] 
开发者ID:DEAP,项目名称:deap,代码行数:26,代码来源:emna.py

示例9: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():
    random.seed(64)
    
    pop = toolbox.population(n=300)
    hof = tools.HallOfFame(1)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", numpy.mean)
    stats.register("std", numpy.std)
    stats.register("min", numpy.min)
    stats.register("max", numpy.max)
    
    pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40, 
                                   stats=stats, halloffame=hof, verbose=True)
    
    return pop, log, hof 
开发者ID:soravux,项目名称:scoop,代码行数:17,代码来源:deap_ga_onemax.py

示例10: geneticAlgorithm

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def geneticAlgorithm(X, y, n_population, n_generation):
    """
    Deap global variables
    Initialize variables to use eaSimple
    """
    # create individual
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create("Individual", list, fitness=creator.FitnessMax)

    # create toolbox
    toolbox = base.Toolbox()
    toolbox.register("attr_bool", random.randint, 0, 1)
    toolbox.register("individual", tools.initRepeat,
                     creator.Individual, toolbox.attr_bool, len(X.columns))
    toolbox.register("population", tools.initRepeat, list,
                     toolbox.individual)
    toolbox.register("evaluate", getFitness, X=X, y=y)
    toolbox.register("mate", tools.cxOnePoint)
    toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
    toolbox.register("select", tools.selTournament, tournsize=3)

    # initialize parameters
    pop = toolbox.population(n=n_population)
    hof = tools.HallOfFame(n_population * n_generation)
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("avg", np.mean)
    stats.register("min", np.min)
    stats.register("max", np.max)

    # genetic algorithm
    pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
                                   ngen=n_generation, stats=stats, halloffame=hof,
                                   verbose=True)

    # return hall of fame
    return hof 
开发者ID:renatoosousa,项目名称:GeneticAlgorithmForFeatureSelection,代码行数:38,代码来源:gaFeatureSelection.py

示例11: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():

    # create initial population (generation 0):
    population = toolbox.populationCreator(n=POPULATION_SIZE)

    # prepare the statistics object:
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("min", np.min)
    stats.register("avg", np.mean)

    # define the hall-of-fame object:
    hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

    # perform the Genetic Algorithm flow with elitism:
    population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
                                              ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)

    # print info for best solution found:
    best = hof.items[0]
    print("-- Best Individual = ", best)
    print("-- Best Fitness = ", best.fitness.values[0])

    # extract statistics:
    minFitnessValues, meanFitnessValues = logbook.select("min", "avg")

    # plot statistics:
    sns.set_style("whitegrid")
    plt.plot(minFitnessValues, color='red')
    plt.plot(meanFitnessValues, color='green')
    plt.xlabel('Generation')
    plt.ylabel('Min / Average Fitness')
    plt.title('Min and Average fitness over Generations')

    plt.show() 
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:36,代码来源:04-optimize-simionescu.py

示例12: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():

    # create initial population (generation 0):
    population = toolbox.populationCreator(n=POPULATION_SIZE)

    # prepare the statistics object:
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("min", np.min)
    stats.register("avg", np.mean)

    # define the hall-of-fame object:
    hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

    # perform the Genetic Algorithm flow with hof feature added:
    population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
                                              ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)

    # print best individual info:
    best = hof.items[0]
    print("-- Best Ever Individual = ", best)
    print("-- Best Ever Fitness = ", best.fitness.values[0])

    # plot best solution:
    plt.figure(1)
    tsp.plotData(best)

    # plot statistics:
    minFitnessValues, meanFitnessValues = logbook.select("min", "avg")
    plt.figure(2)
    sns.set_style("whitegrid")
    plt.plot(minFitnessValues, color='red')
    plt.plot(meanFitnessValues, color='green')
    plt.xlabel('Generation')
    plt.ylabel('Min / Average Fitness')
    plt.title('Min and Average fitness over Generations')

    # show both plots:
    plt.show() 
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:40,代码来源:03-solve-tsp.py

示例13: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():

    # create initial population (generation 0):
    population = toolbox.populationCreator(n=POPULATION_SIZE)

    # prepare the statistics object:
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("min", np.min)
    stats.register("avg", np.mean)

    # define the hall-of-fame object:
    hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

    # perform the Genetic Algorithm flow with hof feature added:
    population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
                                              ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)

    # print best individual info:
    best = hof.items[0]
    print("-- Best Ever Individual = ", best)
    print("-- Best Ever Fitness = ", best.fitness.values[0])

    # plot best solution:
    plt.figure(1)
    tsp.plotData(best)

    # plot statistics:
    minFitnessValues, meanFitnessValues = logbook.select("min", "avg")
    plt.figure(2)
    sns.set_style("whitegrid")
    plt.plot(minFitnessValues, color='red')
    plt.plot(meanFitnessValues, color='green')
    plt.xlabel('Generation')
    plt.ylabel('Min / Average Fitness')
    plt.title('Min and Average fitness over Generations')

    # show both plots:
    plt.show() 
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:40,代码来源:02-solve-tsp-first-attempt.py

示例14: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():

    # create initial population (generation 0):
    population = toolbox.populationCreator(n=POPULATION_SIZE)

    # prepare the statistics object:
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("max", numpy.max)
    stats.register("avg", numpy.mean)

    # define the hall-of-fame object:
    hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

    # perform the Genetic Algorithm flow with hof feature added:
    population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION,
                                              ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True)

    # print best solution found:
    best = hof.items[0]
    print("-- Best Ever Individual = ", best)
    print("-- Best Ever Fitness = ", best.fitness.values[0])

    print("-- Knapsack Items = ")
    knapsack.printItems(best)

    # extract statistics:
    maxFitnessValues, meanFitnessValues = logbook.select("max", "avg")

    # plot statistics:
    sns.set_style("whitegrid")
    plt.plot(maxFitnessValues, color='red')
    plt.plot(meanFitnessValues, color='green')
    plt.xlabel('Generation')
    plt.ylabel('Max / Average Fitness')
    plt.title('Max and Average fitness over Generations')
    plt.show() 
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:38,代码来源:01-solve-knapsack.py

示例15: main

# 需要导入模块: from deap import tools [as 别名]
# 或者: from deap.tools import HallOfFame [as 别名]
def main():

    # create initial population (generation 0):
    population = toolbox.populationCreator(n=POPULATION_SIZE)

    # prepare the statistics object:
    stats = tools.Statistics(lambda ind: ind.fitness.values)
    stats.register("max", numpy.max)
    stats.register("avg", numpy.mean)

    # define the hall-of-fame object:
    hof = tools.HallOfFame(HALL_OF_FAME_SIZE)

    # perform the Genetic Algorithm flow with hof feature added:
    population, logbook = elitism.eaSimpleWithElitism(population,
                                                      toolbox,
                                                      cxpb=P_CROSSOVER,
                                                      mutpb=P_MUTATION,
                                                      ngen=MAX_GENERATIONS,
                                                      stats=stats,
                                                      halloffame=hof,
                                                      verbose=True)

    # print best solution found:
    print("- Best solution is: ",
          test.formatParams(hof.items[0]),
          ", accuracy = ",
          hof.items[0].fitness.values[0]) 
开发者ID:PacktPublishing,项目名称:Hands-On-Genetic-Algorithms-with-Python,代码行数:30,代码来源:01-optimize-mlp-layers.py


注:本文中的deap.tools.HallOfFame方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。