当前位置: 首页>>代码示例>>Python>>正文


Python datasets.load_dataset方法代码示例

本文整理汇总了Python中datasets.load_dataset方法的典型用法代码示例。如果您正苦于以下问题:Python datasets.load_dataset方法的具体用法?Python datasets.load_dataset怎么用?Python datasets.load_dataset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在datasets的用法示例。


在下文中一共展示了datasets.load_dataset方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: import_data_loaders

# 需要导入模块: import datasets [as 别名]
# 或者: from datasets import load_dataset [as 别名]
def import_data_loaders(config, n_workers, verbose=1):
    """Import datasets and wrap them into DataLoaders from configuration
    """
    train_loaders, test_loaders = dict(), dict()
    for dataset_config in config['datasets']:
        train_data, test_data = datasets.load_dataset(
                dataset_config['name'], dataset_config['kwargs'])
        train_loader = torch.utils.data.DataLoader(
                train_data,
                batch_size=config['batch_size'],
                shuffle=True,
                num_workers=n_workers)
        test_loader = torch.utils.data.DataLoader(
                test_data,
                batch_size=config['batch_size'],
                shuffle=False,
                num_workers=n_workers)
        train_loaders[dataset_config['task_id']] = train_loader
        test_loaders[dataset_config['task_id']] = test_loader
    log_utils.print_datasets_info(train_loaders, test_loaders, verbose)
    return train_loaders, test_loaders 
开发者ID:hav4ik,项目名称:Hydra,代码行数:23,代码来源:run.py

示例2: main

# 需要导入模块: import datasets [as 别名]
# 或者: from datasets import load_dataset [as 别名]
def main(args):
    if args.cuda and not torch.cuda.is_available():
        raise ValueError("GPUs are not available, please run at cpu mode")

    # initialize datasets
    train_set, val_set = load_dataset(args.root, 'IM')
    print("Dataset : {} ==> Train : {} ; Val : {} .".format(args.dataset, len(train_set), len(val_set)))

    # initialize network
    args.src_ch = train_set.src_ch
    args.tar_ch = train_set.tar_ch
    net = load_model(args)
    print("Model : {} ==> (Src_ch : {} ; Tar_ch : {} ; Base_Kernel : {})".format(net.symbol, args.src_ch, args.tar_ch, args.base_kernel))

    # initialize runner
    method = "{}-{}".format(net.symbol, args.dataset) 
    run = set_trainer(args, method)
    print("Start training ...")

    run.training(net, [train_set, val_set])
    run.save_log()
    run.learning_curve() 
开发者ID:huster-wgm,项目名称:geoseg,代码行数:24,代码来源:estrain.py

示例3: main

# 需要导入模块: import datasets [as 别名]
# 或者: from datasets import load_dataset [as 别名]
def main(args):
    if args.cuda and not torch.cuda.is_available():
        raise ValueError("GPUs are not available, please run at cpu mode")

    # initialize datasets
    if "MCFCN" in args.net:
        mode = 'IMS'
    elif "BRNet" in args.net:
        mode = 'IME'
    else:
        mode = 'IE'
    train_set, val_set = load_dataset(args.root, mode)
    print("Dataset : {} ==> Train : {} ; Val : {}".format(args.root, len(train_set), len(val_set)))

    # initialize network
    args.src_ch = train_set.src_ch
    args.tar_ch = train_set.tar_ch
    net = load_model(args)
    print("Model : {} ==> (Src_ch : {} ; Tar_ch : {} ; Base_Kernel : {})".format(args.net, args.src_ch, args.tar_ch, args.base_kernel))

    # initialize runner
    method = "{}-{}*{}*{}-{}{}-{}".format(args.net, args.src_ch, args.tar_ch, args.base_kernel, args.root, mode, args.loss) 
    run = set_trainer(args, method)
    print("Start training ...")

    run.training(net, [train_set, val_set])
    run.save_log()
    run.learning_curve() 
开发者ID:huster-wgm,项目名称:geoseg,代码行数:30,代码来源:trainIE.py

示例4: main

# 需要导入模块: import datasets [as 别名]
# 或者: from datasets import load_dataset [as 别名]
def main(args):
    if args.cuda and not torch.cuda.is_available():
        raise ValueError("GPUs are not available, please run at cpu mode")

    # initialize datasets
    if "MCFCN" in args.net:
        mode = 'IMS'
    elif "BRNet" in args.net:
        mode = 'IME'
    else:
        mode = 'IM'
    train_set, val_set = load_dataset(args.root, mode)
    print("Dataset : {} ==> Train : {} ; Val : {}".format(args.root, len(train_set), len(val_set)))

    # initialize network
    args.src_ch = train_set.src_ch
    args.tar_ch = train_set.tar_ch
    net = load_model(args)
    print("Model : {} ==> (Src_ch : {} ; Tar_ch : {} ; Base_Kernel : {})".format(args.net, args.src_ch, args.tar_ch, args.base_kernel))

    # initialize runner
    method = "{}-{}*{}*{}-{}".format(args.net, args.src_ch, args.tar_ch, args.base_kernel, args.root) 
    run = set_trainer(args, method)
    print("Start training ...")

    run.training(net, [train_set, val_set])
    run.save_log()
    run.learning_curve() 
开发者ID:huster-wgm,项目名称:geoseg,代码行数:30,代码来源:train.py

示例5: main

# 需要导入模块: import datasets [as 别名]
# 或者: from datasets import load_dataset [as 别名]
def main(args):
    train_loader, test_loader = load_dataset(args.label, args.batch_size)
    model = ShakePyramidNet(depth=args.depth, alpha=args.alpha, label=args.label)
    model = torch.nn.DataParallel(model).cuda()
    cudnn.benckmark = True

    opt = optim.SGD(model.parameters(),
                    lr=args.lr,
                    momentum=0.9,
                    weight_decay=args.weight_decay,
                    nesterov=args.nesterov)
    scheduler = optim.lr_scheduler.MultiStepLR(opt, [args.epochs // 2, args.epochs * 3 // 4])
    loss_func = nn.CrossEntropyLoss().cuda()

    headers = ["Epoch", "LearningRate", "TrainLoss", "TestLoss", "TrainAcc.", "TestAcc."]
    logger = utils.Logger(args.checkpoint, headers)
    for e in range(args.epochs):
        scheduler.step()
        model.train()
        train_loss, train_acc, train_n = 0, 0, 0
        bar = tqdm(total=len(train_loader), leave=False)
        for x, t in train_loader:
            x, t = Variable(x.cuda()), Variable(t.cuda())
            y = model(x)
            loss = loss_func(y, t)
            opt.zero_grad()
            loss.backward()
            opt.step()

            train_acc += utils.accuracy(y, t).item()
            train_loss += loss.item() * t.size(0)
            train_n += t.size(0)
            bar.set_description("Loss: {:.4f}, Accuracy: {:.2f}".format(
                train_loss / train_n, train_acc / train_n * 100), refresh=True)
            bar.update()
        bar.close()

        model.eval()
        test_loss, test_acc, test_n = 0, 0, 0
        for x, t in tqdm(test_loader, total=len(test_loader), leave=False):
            with torch.no_grad():
                x, t = Variable(x.cuda()), Variable(t.cuda())
                y = model(x)
                loss = loss_func(y, t)
                test_loss += loss.item() * t.size(0)
                test_acc += utils.accuracy(y, t).item()
                test_n += t.size(0)

        if (e + 1) % args.snapshot_interval == 0:
            torch.save({
                "state_dict": model.state_dict(),
                "optimizer": opt.state_dict()
            }, os.path.join(args.checkpoint, "{}.tar".format(e + 1)))

        lr = opt.param_groups[0]["lr"]
        logger.write(e+1, lr, train_loss / train_n, test_loss / test_n,
                     train_acc / train_n * 100, test_acc / test_n * 100) 
开发者ID:owruby,项目名称:shake-drop_pytorch,代码行数:59,代码来源:train.py


注:本文中的datasets.load_dataset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。