当前位置: 首页>>代码示例>>Python>>正文


Python download_and_convert_flowers.run方法代码示例

本文整理汇总了Python中datasets.download_and_convert_flowers.run方法的典型用法代码示例。如果您正苦于以下问题:Python download_and_convert_flowers.run方法的具体用法?Python download_and_convert_flowers.run怎么用?Python download_and_convert_flowers.run使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在datasets.download_and_convert_flowers的用法示例。


在下文中一共展示了download_and_convert_flowers.run方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'cifar10':
    download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'wikiart':
    if not FLAGS.input_dataset_dir is None:
      convert_wikiart.run(FLAGS.input_dataset_dir, FLAGS.dataset_dir)

    else:
      raise ValueError("For wikiart, you must supply a valid input directory with --input_dataset_dir")
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_name) 
开发者ID:mlberkeley,项目名称:Creative-Adversarial-Networks,代码行数:23,代码来源:download_and_convert_data.py

示例2: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'cifar10':
    if FLAGS.shard:
      download_convert_and_shard_cifar10.run(FLAGS.dataset_dir)
    else:
      download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_dir) 
开发者ID:wenwei202,项目名称:terngrad,代码行数:20,代码来源:download_and_convert_data.py

示例3: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'cifar10':
    download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'fer':
    download_and_convert_fer.run(FLAGS.dataset_dir,FLAGS.pic_path)
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_name) 
开发者ID:ucloud,项目名称:uai-sdk,代码行数:19,代码来源:download_and_convert_data.py

示例4: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'cifar10':
    download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'diabetic':
      download_and_convert_diabetic.run(FLAGS.dataset_dir)
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_name) 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-TensorFlow-1.x,代码行数:19,代码来源:download_and_convert_data.py

示例5: display_data

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def display_data():
    
    with tf.Graph().as_default(): 
        dataset = flowers.get_split('train', flowers_data_dir)
        data_provider = slim.dataset_data_provider.DatasetDataProvider(
            dataset, common_queue_capacity=32, common_queue_min=1)
        image, label = data_provider.get(['image', 'label'])
        
        with tf.Session() as sess:    
            with slim.queues.QueueRunners(sess):
                for i in range(4):
                    np_image, np_label = sess.run([image, label])
                    height, width, _ = np_image.shape
                    class_name = name = dataset.labels_to_names[np_label]
                    
                    plt.figure()
                    plt.imshow(np_image)
                    plt.title('%s, %d x %d' % (name, height, width))
                    plt.axis('off')
                    plt.show()
    return 
开发者ID:LevinJ,项目名称:SSD_tensorflow_VOC,代码行数:23,代码来源:data_generator.py

示例6: disp_data

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def disp_data():
    with tf.Graph().as_default(): 
        dataset = flowers.get_split('train', flowers_data_dir)
        data_provider = slim.dataset_data_provider.DatasetDataProvider(
            dataset, common_queue_capacity=32, common_queue_min=1)
        image, label,format = data_provider.get(['image', 'label', 'format'])
        
        with tf.Session() as sess:    
            with slim.queues.QueueRunners(sess):
                for i in range(4):
                    np_image, np_label,np_format = sess.run([image, label,format])
                    height, width, _ = np_image.shape
                    class_name = name = dataset.labels_to_names[np_label]
                    
                    plt.figure()
                    plt.imshow(np_image)
                    plt.title('%s, %d x %d' % (name, height, width))
                    plt.axis('off')
                    plt.show()
                
    return 
开发者ID:LevinJ,项目名称:SSD_tensorflow_VOC,代码行数:23,代码来源:data_generator.py

示例7: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'customized':
    convert_customized.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'cifar10':
    download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_name) 
开发者ID:yeephycho,项目名称:nasnet-tensorflow,代码行数:19,代码来源:convert_customized_data.py

示例8: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'cifar10':
    download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'visualwakewords':
    download_and_convert_visualwakewords.run(
        FLAGS.dataset_dir, FLAGS.small_object_area_threshold,
        FLAGS.foreground_class_of_interest)
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_name) 
开发者ID:tensorflow,项目名称:models,代码行数:21,代码来源:download_and_convert_data.py

示例9: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'cifar10':
    download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_name) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:17,代码来源:download_and_convert_data.py

示例10: main

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def main(_):
  if not FLAGS.dataset_name:
    raise ValueError('You must supply the dataset name with --dataset_name')
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  if FLAGS.dataset_name == 'cifar10':
    download_and_convert_cifar10.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'flowers':
    download_and_convert_flowers.run(FLAGS.dataset_dir)
  elif FLAGS.dataset_name == 'mnist':
    download_and_convert_mnist.run(FLAGS.dataset_dir)
  else:
    raise ValueError(
        'dataset_name [%s] was not recognized.' % FLAGS.dataset_dir) 
开发者ID:logicalclocks,项目名称:hops-tensorflow,代码行数:17,代码来源:download_and_convert_data.py

示例11: download_convert

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def download_convert():
    dataset_dir = flowers_data_dir
    download_and_convert_flowers.run(dataset_dir)
    return 
开发者ID:LevinJ,项目名称:SSD_tensorflow_VOC,代码行数:6,代码来源:data_generator.py

示例12: apply_random_image

# 需要导入模块: from datasets import download_and_convert_flowers [as 别名]
# 或者: from datasets.download_and_convert_flowers import run [as 别名]
def apply_random_image():
    with tf.Graph().as_default():
        # The model can handle any input size because the first layer is convolutional.
        # The size of the model is determined when image_node is first passed into the my_cnn function.
        # Once the variables are initialized, the size of all the weight matrices is fixed.
        # Because of the fully connected layers, this means that all subsequent images must have the same
        # input size as the first image.
        batch_size, height, width, channels = 3, 28, 28, 3
        images = tf.random_uniform([batch_size, height, width, channels], maxval=1)
        
        # Create the model.
        num_classes = 10
        logits = my_cnn(images, num_classes, is_training=True)
        probabilities = tf.nn.softmax(logits)
      
        # Initialize all the variables (including parameters) randomly.
        init_op = tf.global_variables_initializer()
      
        with tf.Session() as sess:
            # Run the init_op, evaluate the model outputs and print the results:
            sess.run(init_op)
            probabilities = sess.run(probabilities)
            
    print('Probabilities Shape:')
    print(probabilities.shape)  # batch_size x num_classes 
    
    print('\nProbabilities:')
    print(probabilities)
    
    print('\nSumming across all classes (Should equal 1):')
    print(np.sum(probabilities, 1)) # Each row sums to 1
    return 
开发者ID:LevinJ,项目名称:SSD_tensorflow_VOC,代码行数:34,代码来源:data_generator.py


注:本文中的datasets.download_and_convert_flowers.run方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。