本文整理汇总了Python中datasets.dataset_utils.bytes_feature方法的典型用法代码示例。如果您正苦于以下问题:Python dataset_utils.bytes_feature方法的具体用法?Python dataset_utils.bytes_feature怎么用?Python dataset_utils.bytes_feature使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类datasets.dataset_utils
的用法示例。
在下文中一共展示了dataset_utils.bytes_feature方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _convert_to_example
# 需要导入模块: from datasets import dataset_utils [as 别名]
# 或者: from datasets.dataset_utils import bytes_feature [as 别名]
def _convert_to_example(filename, image_data, height, width, current_file_info, common_info):
colorspace = 'RGB'
channels = 3
image_format = 'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_utils.int64_feature(height),
'image/width': dataset_utils.int64_feature(width),
'image/colorspace': dataset_utils.bytes_feature(colorspace),
'image/channels': dataset_utils.int64_feature(channels),
'image/format': dataset_utils.bytes_feature(image_format),
'image/filename': dataset_utils.bytes_feature(os.path.basename(filename)),
'image/encoded': dataset_utils.bytes_feature(image_data)}))
return example
示例2: _convert_to_example
# 需要导入模块: from datasets import dataset_utils [as 别名]
# 或者: from datasets.dataset_utils import bytes_feature [as 别名]
def _convert_to_example(filename, image_buffer, height, width, current_file_info, common_info):
"""Build an Example proto for an example.
Args:
filename: string, path to an image file, e.g., '/path/to/example.JPG'
image_buffer: string, JPEG encoding of RGB image
height: integer, image height in pixels
width: integer, image width in pixels
current_file_info: equivalent to label: integer, identifier for the ground truth for the network
common_info: a list of tags with format: ('type', 'ambiguous', 'count', 'name', 'id')
Returns:
Example proto
"""
colorspace = 'RGB'
channels = 3
image_format = 'JPEG'
human_readable_tags = DanbooruDataConverter._tag_to_human_readable(current_file_info,common_info)
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_utils.int64_feature(height),
'image/width': dataset_utils.int64_feature(width),
'image/colorspace': dataset_utils.bytes_feature(colorspace),
'image/channels': dataset_utils.int64_feature(channels),
'image/class/label': dataset_utils.int64_feature(current_file_info),
'image/class/text': dataset_utils.bytes_feature(human_readable_tags),
'image/format': dataset_utils.bytes_feature(image_format),
'image/filename': dataset_utils.bytes_feature(os.path.basename(filename)),
'image/encoded': dataset_utils.bytes_feature(image_buffer)}))
return example
示例3: _convert_to_example
# 需要导入模块: from datasets import dataset_utils [as 别名]
# 或者: from datasets.dataset_utils import bytes_feature [as 别名]
def _convert_to_example(filename, image_data, height, width, current_file_info, common_info):
colorspace = 'RGB'
channels = 3
image_format = 'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/colorspace': dataset_utils.bytes_feature(colorspace),
'image/channels': dataset_utils.int64_feature(channels),
'image/format': dataset_utils.bytes_feature(image_format),
'image/filename': dataset_utils.bytes_feature(os.path.basename(filename)),
'image/encoded': dataset_utils.bytes_feature(image_data),
}))
return example
示例4: _convert_to_example
# 需要导入模块: from datasets import dataset_utils [as 别名]
# 或者: from datasets.dataset_utils import bytes_feature [as 别名]
def _convert_to_example(image_data, labels, labels_text, bboxes, shape,
difficult, truncated):
"""Build an Example proto for an image example.
Args:
image_data: string, JPEG encoding of RGB image;
labels: list of integers, identifier for the ground truth;
labels_text: list of strings, human-readable labels;
bboxes: list of bounding boxes; each box is a list of integers;
specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong
to the same label as the image label.
shape: 3 integers, image shapes in pixels.
Returns:
Example proto
"""
xmin = []
ymin = []
xmax = []
ymax = []
for b in bboxes:
assert len(b) == 4
# pylint: disable=expression-not-assigned
[l.append(point) for l, point in zip([ymin, xmin, ymax, xmax], b)]
# pylint: enable=expression-not-assigned
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/format': bytes_feature(image_format),
'image/encoded': bytes_feature(image_data)}))
return example
示例5: _process_image
# 需要导入模块: from datasets import dataset_utils [as 别名]
# 或者: from datasets.dataset_utils import bytes_feature [as 别名]
def _process_image(directory, split, name):
# Read the image file.
filename = os.path.join(directory, 'image_2', name + '.png')
image_data = tf.gfile.FastGFile(filename, 'r').read()
# Get shape
img = cv2.imread(filename)
shape = np.shape(img)
label_list = []
type_list = []
bbox_x1_list = []
bbox_y1_list = []
bbox_x2_list = []
bbox_y2_list = []
# If 'test' split, skip annotations
if re.findall(r'train', split):
# Read the txt annotation file.
filename = os.path.join(directory, 'label_2', name + '.txt')
with open(filename) as anno_file:
objects = anno_file.readlines()
for object in objects:
obj_anno = object.split(' ')
type_txt = obj_anno[0].encode('ascii')
if type_txt in CLASSES:
label_list.append(CLASSES[type_txt])
type_list.append(type_txt)
# Bounding Box
bbox_x1 = float(obj_anno[4])
bbox_y1 = float(obj_anno[5])
bbox_x2 = float(obj_anno[6])
bbox_y2 = float(obj_anno[7])
bbox_x1_list.append(bbox_x1)
bbox_y1_list.append(bbox_y1)
bbox_x2_list.append(bbox_x2)
bbox_y2_list.append(bbox_y2)
image_format = b'PNG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': bytes_feature(image_data),
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(bbox_x1_list),
'image/object/bbox/xmax': float_feature(bbox_x2_list),
'image/object/bbox/ymin': float_feature(bbox_y1_list),
'image/object/bbox/ymax': float_feature(bbox_y2_list),
'image/object/bbox/label': int64_feature(label_list),
'image/object/bbox/label_text': bytes_feature(type_list),
}))
return example
示例6: _convert_to_example
# 需要导入模块: from datasets import dataset_utils [as 别名]
# 或者: from datasets.dataset_utils import bytes_feature [as 别名]
def _convert_to_example(filename, image_data, height, width, current_file_info, shared_info):
colorspace = 'RGB'
channels = 3
image_format = 'JPEG'
(x_expanded, y_expanded, w_expanded, h_expanded, image_w, image_h, tags_id, original_image,
face_xywh) = current_file_info
feature = {
'image/x': dataset_utils.int64_feature(x_expanded),
'image/y': dataset_utils.int64_feature(y_expanded),
'image/height': dataset_utils.int64_feature(h_expanded),
'image/width': dataset_utils.int64_feature(w_expanded),
'image/face_xywh': dataset_utils.float_feature(face_xywh),
# 'image/left_eye_xywh': dataset_utils.float_feature(left_eye_xywh),
# 'image/right_eye_xywh': dataset_utils.float_feature(right_eye_xywh),
# 'image/mouth_xywh': dataset_utils.float_feature(mouth_xywh),
'image/colorspace': dataset_utils.bytes_feature(colorspace),
'image/channels': dataset_utils.int64_feature(channels),
'image/format': dataset_utils.bytes_feature(image_format),
'image/filename': dataset_utils.bytes_feature(os.path.basename(filename)),
'image/encoded': dataset_utils.bytes_feature(image_data),
# Encoding original takes up too much space. Not recommended.
# 'image/original': dataset_utils.bytes_feature(original_image),
}
example = tf.train.Example(features=tf.train.Features(feature=feature))
return example
###########################
# Other utility functions #
###########################
# Inherits from parent class.
########
# Main #
########
# Inherits from parent class.
################
# Helper class #
################
示例7: _convert_to_example
# 需要导入模块: from datasets import dataset_utils [as 别名]
# 或者: from datasets.dataset_utils import bytes_feature [as 别名]
def _convert_to_example(image_data, labels, labels_text, bboxes, shape,
difficult, truncated,name):
"""Build an Example proto for an image example.
Args:
image_data: string, JPEG encoding of RGB image;
labels: list of integers, identifier for the ground truth;
labels_text: list of strings, human-readable labels;
bboxes: list of bounding boxes; each box is a list of integers;
specifying [xmin, ymin, xmax, ymax]. All boxes are assumed to belong
to the same label as the image label.
shape: 3 integers, image shapes in pixels.
Returns:
Example proto
"""
xmin = []
ymin = []
xmax = []
ymax = []
for b in bboxes:
assert len(b) == 4
# pylint: disable=expression-not-assigned
[l.append(point) for l, point in zip([ymin, xmin, ymax, xmax], b)]
# pylint: enable=expression-not-assigned
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/format': bytes_feature(image_format),
'image/filename': bytes_feature(name.encode('utf-8')),
'image/encoded': bytes_feature(image_data)}))
return example