本文整理汇总了Python中dataset.Dataset方法的典型用法代码示例。如果您正苦于以下问题:Python dataset.Dataset方法的具体用法?Python dataset.Dataset怎么用?Python dataset.Dataset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dataset
的用法示例。
在下文中一共展示了dataset.Dataset方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def main():
parser = argparse.ArgumentParser(description='test', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
'-a', '--attributes',
nargs='+',
type=str,
help='Specify attribute name for training. \nAll attributes can be found in list_attr_celeba.txt'
)
parser.add_argument(
'-g', '--gpu',
default='0',
type=str,
help='Specify GPU id. \ndefault: %(default)s. \nUse comma to seperate several ids, for example: 0,1'
)
args = parser.parse_args()
celebA = Dataset(args.attributes)
DNA_GAN = Model(args.attributes, is_train=True)
run(config, celebA, DNA_GAN, gpu=args.gpu)
示例2: split_train_val_test
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def split_train_val_test(data_dir, img_size=256):
df = pd.read_csv(
join(data_dir, 'list_eval_partition.txt'),
delim_whitespace=True, header=None
)
filenames, labels = df.values[:, 0], df.values[:, 1]
train_filenames = filenames[labels == 0]
valid_filenames = filenames[labels == 1]
test_filenames = filenames[labels == 2]
train_set = Dataset(
data_dir, train_filenames, input_transform_augment(178, img_size),
target_transform(), target_transform_binary()
)
valid_set = Dataset(
data_dir, valid_filenames, input_transform(178, img_size),
target_transform(), target_transform_binary()
)
test_set = Dataset(
data_dir, test_filenames, input_transform(178, img_size),
target_transform(), target_transform_binary()
)
return train_set, valid_set, test_set
示例3: main
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def main(unused_argv):
# tf.logging.set_verbosity(tf.logging.INFO)
# load two copies of the dataset
print('Loading datasets...')
dataset = [Dataset(bs=FLAGS.batch_size, filepattern=FLAGS.filepattern,
label=i) for i in range(10)]
print('Computing Wasserstein distance(s)...')
for i in range(10):
for j in range(10):
with tf.Graph().as_default():
# compute Wasserstein distance between sets of labels i and j
wasserstein = Wasserstein(dataset[i], dataset[j])
loss = wasserstein.dist(C=.1, nsteps=FLAGS.loss_steps)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(loss)
print_flush('%f ' % res)
print_flush('\n')
示例4: main
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def main(unused_argv):
# tf.logging.set_verbosity(tf.logging.INFO)
# load two copies of the dataset
print('Loading datasets...')
subset1 = Dataset(bs=FLAGS.batch_size, filepattern=FLAGS.filepattern)
subset2 = Dataset(bs=FLAGS.batch_size, filepattern=FLAGS.filepattern)
print('Computing Wasserstein distance...')
with tf.Graph().as_default():
# compute Wasserstein distance between two sets of examples
wasserstein = Wasserstein(subset1, subset2)
loss = wasserstein.dist(C=.1, nsteps=FLAGS.loss_steps)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
res = sess.run(loss)
print('result: %f\n' % res)
示例5: extract_users
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def extract_users(dataset_session: DatasetSession, log_metadata_obj: dict) -> List:
############## TESTS
# get dataset
log_file_dataset: Dataset = dataset_session.get_csv_dataset()
# get core dataframe
log_file_core_dataframe: CoreDataFrame = log_file_dataset.get_dataframe()
# get data frame (.data)
log_file_dataframe: pd.DataFrame = log_file_core_dataframe.data
# test: get shape
log_file_shape: Tuple = log_file_dataframe.shape
logging.warning("execute(): dataframe shape: "+str(log_file_shape))
############
logging.info("ExtractAllUsersCSV: extract_users log_file_data.columns: - "+str(log_file_dataframe.columns))
logging.info("ExtractAllUsersCSV: extract_users log_metadata_obj: - "+str(log_metadata_obj))
id_column: pd.Series = log_file_dataframe[ log_metadata_obj["id_feature"]]
logging.info( "ExtractAllUsersCSV, extract_users, id_column, len of column: "+str(len(id_column)) )
user_set: List = np.unique( log_file_dataframe[ log_metadata_obj["id_feature"] ].fillna("NA") )
logging.info( "ExtractAllUsersCSV, extract_users, user_set len of column: "+str(len(user_set)) )
logging.error(user_set)
return user_set
示例6: __init__
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def __init__(self, holo_env, name="session"):
"""
Constructor for Holoclean session
:param holo_env: Holoclean object
:param name: Name for the Holoclean session
"""
logging.basicConfig()
# Initialize members
self.name = name
self.holo_env = holo_env
self.Denial_constraints = [] # Denial Constraint strings
self.dc_objects = {} # Denial Constraint Objects
self.featurizers = []
self.error_detectors = []
self.cv = None
self.pruning = None
self.dataset = Dataset()
self.parser = ParserInterface(self)
self.inferred_values = None
self.feature_count = 0
示例7: main
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def main():
parser = argparse.ArgumentParser(description='test', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
'-a', '--attribute',
default='Smiling',
type=str,
help='Specify attribute name for training. \ndefault: %(default)s. \nAll attributes can be found in list_attr_celeba.txt'
)
parser.add_argument(
'-g', '--gpu',
default='0',
type=str,
help='Specify GPU id. \ndefault: %(default)s. \nUse comma to seperate several ids, for example: 0,1'
)
args = parser.parse_args()
celebA = Dataset(args.attribute)
GeneGAN = Model(is_train=True)
run(config, celebA, GeneGAN, gpu=args.gpu)
示例8: create_dataset
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def create_dataset(exp_type, batch_size, split_name):
hdf5_file_list_txt = os.path.join(g_shapenet_parts_dir,
'{}_hdf5_file_list.txt'.format(split_name))
assert(os.path.exists(hdf5_file_list_txt))
with open(hdf5_file_list_txt, 'r') as f:
hdf5_file_list = f.read().splitlines()
point_clouds = []
labels = []
category_ids = []
for i, hdf5_file in enumerate(hdf5_file_list):
f = h5py.File(os.path.join(g_shapenet_parts_dir, hdf5_file))
point_clouds.append(f['data'][:])
labels.append(f['pid'][:])
category_ids.append(f['label'][:])
print("Loaded '{}'.".format(hdf5_file))
point_clouds = np.concatenate(point_clouds)
labels = np.concatenate(labels)
category_ids = np.concatenate(category_ids)
category_name_file = os.path.join(g_shapenet_parts_dir,
'all_object_categories.txt')
assert(os.path.exists(category_name_file))
with open(category_name_file, 'r') as f:
category_names = f.read().splitlines()
for i, name in enumerate(category_names):
category_names[i] = name.split('\t')[0]
print(category_names)
return Dataset('ShapeNetParts', exp_type, batch_size, point_clouds, labels,
category_ids=category_ids, category_names=category_names)
示例9: bad_cases
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def bad_cases():
print("\nPredicting...\n")
graph = tf.Graph()
with graph.as_default(): # with tf.Graph().as_default() as g:
sess = tf.Session()
with sess.as_default():
# Load the saved meta graph and restore variables
# saver = tf.train.Saver(tf.global_variables())
meta_file = os.path.abspath(os.path.join(FLAGS.model_dir, 'checkpoints/model-1000.meta'))
new_saver = tf.train.import_meta_graph(meta_file)
new_saver.restore(sess, tf.train.latest_checkpoint(os.path.join(FLAGS.model_dir, 'checkpoints')))
# graph = tf.get_default_graph()
# Get the placeholders from the graph by name
# input_x1 = graph.get_operation_by_name("input_x1").outputs[0]
input_x1 = graph.get_tensor_by_name("input_x1:0") # Tensor("input_x1:0", shape=(?, 15), dtype=int32)
input_x2 = graph.get_tensor_by_name("input_x2:0")
dropout_keep_prob = graph.get_tensor_by_name("dropout_keep_prob:0")
# Tensors we want to evaluate
sim = graph.get_tensor_by_name("metrics/sim:0")
y_pred = graph.get_tensor_by_name("metrics/y_pred:0")
dev_sample = {}
for line in open(FLAGS.data_file):
line = line.strip().split('\t')
dev_sample[line[0]] = line[1]
# Generate batches for one epoch
dataset = Dataset(data_file="data/pred.csv")
x1, x2, y = dataset.process_data(sequence_length=FLAGS.max_document_length, is_training=False)
with open("result/fp_file", 'w') as f_fp, open("result/fn_file", 'w') as f_fn:
for lineno, x1_online, x2_online, y_online in enumerate(zip(x1, x2, y)):
sim, y_pred_ = sess.run(
[sim, y_pred], {input_x1: x1_online, input_x2: x2_online, dropout_keep_prob: 1.0})
if y_pred == 1 and y_online == 0: # low precision
f_fp.write(dev_sample[lineno+1] + str(sim) + '\n')
elif y_pred == 0 and y_online == 1: # low recall
f_fn.write(dev_sample[lineno + 1] + str(sim) + '\n')
示例10: main
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def main(input_file, output_file):
print("\nPredicting...\n")
graph = tf.Graph()
with graph.as_default(): # with tf.Graph().as_default() as g:
sess = tf.Session()
with sess.as_default():
# Load the saved meta graph and restore variables
# saver = tf.train.Saver(tf.global_variables())
meta_file = os.path.abspath(os.path.join(FLAGS.model_dir, 'checkpoints/model-3400.meta'))
new_saver = tf.train.import_meta_graph(meta_file)
new_saver.restore(sess, tf.train.latest_checkpoint(os.path.join(FLAGS.model_dir, 'checkpoints')))
# graph = tf.get_default_graph()
# Get the placeholders from the graph by name
# input_x1 = graph.get_operation_by_name("input_x1").outputs[0]
input_x1 = graph.get_tensor_by_name("input_x1:0") # Tensor("input_x1:0", shape=(?, 15), dtype=int32)
input_x2 = graph.get_tensor_by_name("input_x2:0")
dropout_keep_prob = graph.get_tensor_by_name("dropout_keep_prob:0")
# Tensors we want to evaluate
y_pred = graph.get_tensor_by_name("metrics/y_pred:0")
# vars = tf.get_collection('vars')
# for var in vars:
# print(var)
e = graph.get_tensor_by_name("cosine:0")
# Generate batches for one epoch
dataset = Dataset(data_file=input_file, is_training=False)
data = dataset.process_data(data_file=input_file, sequence_length=FLAGS.max_document_length)
batches = dataset.batch_iter(data, FLAGS.batch_size, 1, shuffle=False)
with open(output_file, 'w') as fo:
lineno = 1
for batch in batches:
x1_batch, x2_batch, _, _ = zip(*batch)
y_pred_ = sess.run([y_pred], {input_x1: x1_batch, input_x2: x2_batch, dropout_keep_prob: 1.0})
for pred in y_pred_[0]:
fo.write('{}\t{}\n'.format(lineno, pred))
lineno += 1
示例11: __init__
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def __init__(self, env, name="session"):
"""
Constructor for Holoclean session
:param env: Holoclean environment
:param name: Name for the Holoclean session
"""
# use DEBUG logging level if verbose enabled
if env['verbose']:
root_logger.setLevel(logging.DEBUG)
gensim_logger.setLevel(logging.DEBUG)
logging.debug('initiating session with parameters: %s', env)
# Initialize random seeds.
random.seed(env['seed'])
torch.manual_seed(env['seed'])
np.random.seed(seed=env['seed'])
# Initialize members
self.name = name
self.env = env
self.ds = Dataset(name, env)
self.dc_parser = Parser(env, self.ds)
self.domain_engine = DomainEngine(env, self.ds)
self.detect_engine = DetectEngine(env, self.ds)
self.repair_engine = RepairEngine(env, self.ds)
self.eval_engine = EvalEngine(env, self.ds)
示例12: test_build_dataset
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def test_build_dataset(self):
dirname = os.path.dirname(__file__)
dataset_dir = os.path.join(dirname,'__tmp_dataset')
posts_file = os.path.join(dirname,'posts.json.gz')
app.build_dataset([dataset_dir,posts_file,'user_id','mentions'])
# check if it's there
ds = dataset.Dataset(dataset_dir)
self.assertEquals(len(list(ds.post_iter())),15)
os.system('rm -rf %s' % dataset_dir)
示例13: main
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def main(args):
with tf.Graph().as_default() as graph:
# Create dataset
logging.info('Create data flow from %s' % args.train)
train_data = Dataset(directory=args.train, mean_path=args.mean, batch_size=args.batch_size, num_threads=2, capacity=10000)
# Create initializer
init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
# Config session
config = get_config(args)
# Setup summary
check_summary_writer = tf.summary.FileWriter(os.path.join(args.log, 'check'), graph)
check_op = tf.cast(train_data()['x_t_1'] * 255.0 + train_data()['mean'], tf.uint8)
tf.summary.image('x_t_1_batch_restore', check_op, collections=['check'])
check_summary_op = tf.summary.merge_all('check')
# Start session
with tf.Session(config=config) as sess:
coord = tf.train.Coordinator()
sess.run(init)
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(10):
x_t_1_batch, summary = sess.run([check_op, check_summary_op])
check_summary_writer.add_summary(summary, i)
coord.request_stop()
coord.join(threads)
示例14: test
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def test(opt):
# Load dataset
dataset = Dataset(opt.data_dir, opt.train_txt, opt.test_txt, opt.bbox_txt)
dataset.print_stats()
# Load image transform
test_transform = transforms.Compose([
transforms.Resize((opt.image_width, opt.image_height)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Load data loader
test_loader = mx.gluon.data.DataLoader(
dataset=ImageData(dataset.test, test_transform),
batch_size=opt.batch_size,
num_workers=opt.num_workers
)
# Load model
model = Model(opt)
# Load evaluator
evaluator = Evaluator(model, test_loader, opt.ctx)
# Evaluate
recalls = evaluator.evaluate(ranks=opt.recallk)
for recallk, recall in zip(opt.recallk, recalls):
print("R@{:4d}: {:.4f}".format(recallk, recall))
示例15: main
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import Dataset [as 别名]
def main(config):
# For fast training.
cudnn.benchmark = True
# Create directories if not exist.
if not os.path.exists(config.log_dir):
os.makedirs(config.log_dir)
if not os.path.exists(config.model_save_dir):
os.makedirs(config.model_save_dir)
imgdirs_train = ['data/afw/', 'data/helen/trainset/', 'data/lfpw/trainset/']
imgdirs_test_commomset = ['data/helen/testset/','data/lfpw/testset/']
# Dataset and Dataloader
if config.phase == 'test':
trainset=None
train_loader = None
else:
trainset = Dataset(imgdirs_train, config.phase, 'train', config.rotFactor, config.res, config.gamma)
train_loader = data.DataLoader(trainset,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.num_workers,
pin_memory=True)
testset = Dataset(imgdirs_test_commomset, 'test', config.attr, config.rotFactor, config.res, config.gamma)
test_loader = data.DataLoader(testset,
batch_size=config.batch_size,
num_workers=config.num_workers,
pin_memory=True)
# Solver for training and testing.
solver = Solver(train_loader, test_loader, config)
if config.phase == 'train':
solver.train()
else:
solver.load_state_dict(config.best_model)
solver.test()