本文整理汇总了Python中dataset.DataSet方法的典型用法代码示例。如果您正苦于以下问题:Python dataset.DataSet方法的具体用法?Python dataset.DataSet怎么用?Python dataset.DataSet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dataset
的用法示例。
在下文中一共展示了dataset.DataSet方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: read_train_sets
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def read_train_sets(train_path, image_size, classes, validation_size):
data_set = DataSet()
images, labels, img_names, class_array = load_train_data(train_path, image_size, classes)
images, labels, img_names, class_array = shuffle(images, labels, img_names, class_array)
if isinstance(validation_size, float):
validation_size = int(validation_size * images.shape[0])
validation_images = images[:validation_size]
validation_labels = labels[:validation_size]
validation_img_names = img_names[:validation_size]
validation_cls = class_array[:validation_size]
train_images = images[validation_size:]
train_labels = labels[validation_size:]
train_img_names = img_names[validation_size:]
train_cls = class_array[validation_size:]
data_set.train = DataSet(train_images, train_labels, train_img_names, train_cls)
data_set.valid = DataSet(validation_images, validation_labels, validation_img_names, validation_cls)
return data_set
示例2: generate_toy_data
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def generate_toy_data():
N = 50
DATA_X = np.random.uniform(-5.0, 5.0, [N, 1])
true_log_lambda = -2.0
true_std = np.exp(true_log_lambda) / 2.0 # 0.1
DATA_y = f(DATA_X) + np.random.normal(0.0, true_std, [N, 1])
Xtest = np.asarray(np.arange(-10.0, 10.0, 0.1))
Xtest = Xtest[:, np.newaxis]
ytest = f(Xtest) # + np.random.normal(0, true_std, [Xtest.shape[0], 1])
data = DataSet(DATA_X, DATA_y)
test = DataSet(Xtest, ytest, shuffle=False)
return data, test
示例3: __init__
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def __init__(self):
self.train = dataset.DataSet()
self.test = dataset.DataSet()
示例4: import_mnist
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def import_mnist():
"""
This import mnist and saves the data as an object of our DataSet class
:return:
"""
VALIDATION_SIZE = 0
ONE_HOT = True
TRAIN_DIR = 'INFMNIST_data/'
train_images = extract_images_2(open(TRAIN_DIR + 'mnist8m-patterns-idx3-ubyte.gz'))
train_labels = extract_labels(open(TRAIN_DIR + 'mnist8m-labels-idx1-ubyte.gz'), one_hot=ONE_HOT)
test_images = extract_images(open(TRAIN_DIR + 'test10k-patterns.gz'))
test_labels = extract_labels(open(TRAIN_DIR + 'test10k-labels.gz'), one_hot=ONE_HOT)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
## Process images
train_images = process_mnist(train_images)
validation_images = process_mnist(validation_images)
test_images = process_mnist(test_images)
## Standardize data
train_mean, train_std = get_data_info(train_images)
# train_images = standardize_data(train_images, train_mean, train_std)
# validation_images = standardize_data(validation_images, train_mean, train_std)
# test_images = standardize_data(test_images, train_mean, train_std)
data = DataSet(train_images, train_labels)
test = DataSet(test_images, test_labels)
val = DataSet(validation_images, validation_labels)
return data, test, val
示例5: import_dataset
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def import_dataset(dataset, fold):
train_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtrain__FOLD_' + fold, delimiter=' ')
train_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytrain__FOLD_' + fold, delimiter=' ')
test_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtest__FOLD_' + fold, delimiter=' ')
test_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytest__FOLD_' + fold, delimiter=' ')
data = DataSet(train_X, train_Y)
test = DataSet(test_X, test_Y)
return data, test
示例6: import_dataset
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def import_dataset(dataset, fold):
train_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtrain__FOLD_' + fold, delimiter=' ')
train_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytrain__FOLD_' + fold, delimiter=' ')
train_Y = np.reshape(train_Y, (-1, 1))
test_X = np.loadtxt('FOLDS/' + dataset + '_ARD_Xtest__FOLD_' + fold, delimiter=' ')
test_Y = np.loadtxt('FOLDS/' + dataset + '_ARD_ytest__FOLD_' + fold, delimiter=' ')
test_Y = np.reshape(test_Y, (-1, 1))
data = DataSet(train_X, train_Y)
test = DataSet(test_X, test_Y)
return data, test
示例7: load_data
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def load_data(self):
dataset = self.dataset
assert isinstance(dataset, DataSet)
n_datapoints = dataset.n_datapoints
assert n_datapoints == dataset.X.shape[0]
X, Y = dataset.preproc(dataset.X, dataset.Y)
self.train_X = theano.shared(X, "train_X")
self.train_Y = theano.shared(Y, "train_Y")
self.train_perm = theano.shared(np.random.permutation(n_datapoints))
示例8: read_data_sets
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def read_data_sets(train_dir, seed=0):
one_hot = False
class DataSets(object):
pass
data_sets = DataSets()
TRAIN_IMAGES = "train-images-idx3-ubyte.gz"
TRAIN_LABELS = "train-labels-idx1-ubyte.gz"
TEST_IMAGES = "t10k-images-idx3-ubyte.gz"
TEST_LABELS = "t10k-labels-idx1-ubyte.gz"
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
print('Train', train_images.shape)
print('Test', test_images.shape)
data_sets.train = DataSet(train_images, train_labels, seed=seed)
data_sets.test = DataSet(test_images, test_labels, seed=seed)
return data_sets
示例9: import_mnist
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def import_mnist():
"""
This import mnist and saves the data as an object of our DataSet class
:return:
"""
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 0
ONE_HOT = True
TRAIN_DIR = 'MNIST_data'
local_file = base.maybe_download(TRAIN_IMAGES, TRAIN_DIR,
SOURCE_URL + TRAIN_IMAGES)
train_images = extract_images(open(local_file, 'rb'))
local_file = base.maybe_download(TRAIN_LABELS, TRAIN_DIR,
SOURCE_URL + TRAIN_LABELS)
train_labels = extract_labels(open(local_file, 'rb'), one_hot=ONE_HOT)
local_file = base.maybe_download(TEST_IMAGES, TRAIN_DIR,
SOURCE_URL + TEST_IMAGES)
test_images = extract_images(open(local_file, 'rb'))
local_file = base.maybe_download(TEST_LABELS, TRAIN_DIR,
SOURCE_URL + TEST_LABELS)
test_labels = extract_labels(open(local_file, 'rb'), one_hot=ONE_HOT)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
## Process images
train_images = process_mnist(train_images)
validation_images = process_mnist(validation_images)
test_images = process_mnist(test_images)
## Standardize data
train_mean, train_std = get_data_info(train_images)
# train_images = standardize_data(train_images, train_mean, train_std)
# validation_images = standardize_data(validation_images, train_mean, train_std)
# test_images = standardize_data(test_images, train_mean, train_std)
data = DataSet(train_images, train_labels)
test = DataSet(test_images, test_labels)
val = DataSet(validation_images, validation_labels)
return data, test, val
示例10: read_data_sets
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def read_data_sets(data_folder, seed=0):
train_img = []
train_label = []
test_img = []
test_label = []
filename = 'cifar-10-python.tar.gz'
maybe_download(filename, data_folder)
train_file_list = [
"data_batch_1", "data_batch_2", "data_batch_3", "data_batch_4", "data_batch_5"
]
test_file_list = ["test_batch"]
for i in six.moves.xrange(len(train_file_list)):
tmp_dict = np.load(
os.path.join(data_folder, 'cifar-10-batches-py', train_file_list[i]), encoding='latin1')
train_img.append(tmp_dict["data"])
train_label.append(tmp_dict["labels"])
tmp_dict = np.load(
os.path.join(data_folder, 'cifar-10-batches-py', test_file_list[0]), encoding='latin1')
test_img.append(tmp_dict["data"])
test_label.append(tmp_dict["labels"])
train_img = np.concatenate(train_img)
train_label = np.concatenate(train_label)
test_img = np.concatenate(test_img)
test_label = np.concatenate(test_label)
train_img = np.reshape(train_img, [-1, 3, 32, 32])
test_img = np.reshape(test_img, [-1, 3, 32, 32])
# change format from [B, C, H, W] to [B, H, W, C] for feeding to Tensorflow
train_img = np.transpose(train_img, [0, 2, 3, 1])
test_img = np.transpose(test_img, [0, 2, 3, 1])
class DataSets(object):
pass
data_sets = DataSets()
data_sets.train = DataSet(train_img, train_label, seed=seed)
data_sets.test = DataSet(test_img, test_label, seed=seed)
return data_sets
示例11: train
# 需要导入模块: import dataset [as 别名]
# 或者: from dataset import DataSet [as 别名]
def train(self, learning_rate, training_epochs, batch_size, keep_prob):
self.dataset = DataSet()
self.Y = tf.placeholder(tf.float32, [None, NO_LABEL], name='Y')
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.Y))
self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.cost)
if self.log:
tf.summary.scalar('cost', self.cost)
self.merged = tf.summary.merge_all()
self.train_writer = tf.summary.FileWriter('./log_train', self.sess.graph)
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
print('Training...')
weights = []
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(len(self.dataset.train_idx) / batch_size)
# print('total_batch', total_batch)
for i in range(total_batch + 1):
batch_xs, batch_ys = self.dataset.next_batch(batch_size)
feed_dict = {
self.X: batch_xs.reshape([batch_xs.shape[0], 28, 28, 1]),
self.Y: batch_ys,
self.keep_prob: keep_prob
}
weights, summary, c, _ = self.sess.run([self.parameters, self.merged, self.cost, self.optimizer],
feed_dict=feed_dict)
avg_cost += c / total_batch
if self.log:
self.train_writer.add_summary(summary, epoch + 1)
print('Epoch:', '%02d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print('Training finished!')
saver = tf.train.Saver()
save_path = saver.save(self.sess, "viet_ocr_brain.ckpt")
print("Trainned model is saved in file: %s" % save_path)