本文整理汇总了Python中data_utils.load_data方法的典型用法代码示例。如果您正苦于以下问题:Python data_utils.load_data方法的具体用法?Python data_utils.load_data怎么用?Python data_utils.load_data使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data_utils
的用法示例。
在下文中一共展示了data_utils.load_data方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train_model
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import load_data [as 别名]
def train_model(args):
"""Load the data, train the model, test the model, export / save the model
"""
torch.manual_seed(args.seed)
# Open our dataset
train_loader, test_loader = data_utils.load_data(args.test_split,
args.batch_size)
# Create the model
net = model.SonarDNN().double()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum, nesterov=False)
# Train / Test the model
for epoch in range(1, args.epochs + 1):
train(net, train_loader, optimizer, epoch)
test(net, test_loader)
# Export the trained model
torch.save(net.state_dict(), args.model_name)
if args.model_dir:
# Save the model to GCS
data_utils.save_model(args.model_dir, args.model_name)
示例2: train_model
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import load_data [as 别名]
def train_model(args):
train_features, test_features, train_labels, test_labels = \
data_utils.load_data(args)
sonar_model = model.sonar_model()
sonar_model.fit(train_features, train_labels, epochs=args.epochs,
batch_size=args.batch_size)
score = sonar_model.evaluate(test_features, test_labels,
batch_size=args.batch_size)
print(score)
# Export the trained model
sonar_model.save(args.model_name)
if args.model_dir:
# Save the model to GCS
data_utils.save_model(args.model_dir, args.model_name)
示例3: train_model
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import load_data [as 别名]
def train_model(args):
"""Load the data, train the model, test the model, export / save the model
"""
torch.manual_seed(args.seed)
# Open our dataset
train_loader, test_loader = data_utils.load_data(
args.test_split, args.seed, args.batch_size)
# Create the model
net = model.SonarDNN().double()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum, nesterov=False)
# Train / Test the model
latest_accuracy = 0.0
for epoch in range(1, args.epochs + 1):
train(net, train_loader, optimizer)
latest_accuracy = test(net, test_loader)
# The default name of the metric is training/hptuning/metric.
# We recommend that you assign a custom name. The only functional
# difference is that if you use a custom name, you must set the
# hyperparameterMetricTag value in the HyperparameterSpec object in your
# job request to match your chosen name.
# https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#HyperparameterSpec
hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='my_accuracy_tag',
metric_value=latest_accuracy,
global_step=args.epochs)
# Export the trained model
torch.save(net.state_dict(), args.model_name)
if args.job_dir:
# Save the model to GCS
data_utils.save_model(args.job_dir, args.model_name)
else:
print('Accuracy: {:.0f}%'.format(latest_accuracy))
示例4: read_all_data
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import load_data [as 别名]
def read_all_data( self, actions, data_dir, one_hot=False):
"""
Loads data for training/testing and normalizes it.
Args
actions: list of strings (actions) to load
seq_length_in: number of frames to use in the burn-in sequence
seq_length_out: number of frames to use in the output sequence
data_dir: directory to load the data from
one_hot: whether to use one-hot encoding per action
Returns
train_set: dictionary with normalized training data
test_set: dictionary with test data
data_mean: d-long vector with the mean of the training data
data_std: d-long vector with the standard dev of the training data
dim_to_ignore: dimensions that are not used becaused stdev is too small
dim_to_use: dimensions that we are actually using in the model
"""
train_subject_ids = [1,6,7,8,9,11]
test_subject_ids = [5]
train_set, complete_train = data_utils.load_data( data_dir, train_subject_ids, actions, one_hot )
test_set, complete_test = data_utils.load_data( data_dir, test_subject_ids, actions, one_hot )
# Compute normalization stats
data_mean, data_std, dim_to_ignore, dim_to_use = data_utils.normalization_stats(complete_train)
# Normalize -- subtract mean, divide by stdev
train_set = data_utils.normalize_data( train_set, data_mean, data_std, dim_to_use, actions, one_hot )
test_set = data_utils.normalize_data( test_set, data_mean, data_std, dim_to_use, actions, one_hot )
print("done reading data.")
self.train_set = train_set
self.test_set = test_set
self.data_mean = data_mean
self.data_std = data_std
self.dim_to_ignore = dim_to_ignore
self.dim_to_use = dim_to_use
self.train_keys = list(self.train_set.keys())
开发者ID:chaneyddtt,项目名称:Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,代码行数:46,代码来源:DataLoader.py
示例5: main
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import load_data [as 别名]
def main(args):
# hyper param
do_lower_case = args.do_lower_case
root = args.root_dir
assert os.path.exists(root)
literal_model_type = args.model.split('-')[0].upper()
encoder_model = EncoderModelType[literal_model_type]
literal_model_type = literal_model_type.lower()
mt_dnn_suffix = literal_model_type
if 'base' in args.model:
mt_dnn_suffix += "_base"
elif 'large' in args.model:
mt_dnn_suffix += "_large"
config_class, model_class, tokenizer_class = MODEL_CLASSES[literal_model_type]
tokenizer = tokenizer_class.from_pretrained(args.model, do_lower_case=do_lower_case)
if 'uncased' in args.model:
mt_dnn_suffix = '{}_uncased'.format(mt_dnn_suffix)
else:
mt_dnn_suffix = '{}_cased'.format(mt_dnn_suffix)
if do_lower_case:
mt_dnn_suffix = '{}_lower'.format(mt_dnn_suffix)
mt_dnn_root = os.path.join(root, mt_dnn_suffix)
if not os.path.isdir(mt_dnn_root):
os.mkdir(mt_dnn_root)
task_defs = TaskDefs(args.task_def)
for task in task_defs.get_task_names():
task_def = task_defs.get_task_def(task)
logger.info("Task %s" % task)
for split_name in task_def.split_names:
file_path = os.path.join(root, "%s_%s.tsv" % (task, split_name))
if not os.path.exists(file_path):
logger.warning("File %s doesnot exit")
sys.exit(1)
rows = load_data(file_path, task_def)
dump_path = os.path.join(mt_dnn_root, "%s_%s.json" % (task, split_name))
logger.info(dump_path)
build_data(
rows,
dump_path,
tokenizer,
task_def.data_type,
encoderModelType=encoder_model,
lab_dict=task_def.label_vocab)
示例6: trainDepthMap
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import load_data [as 别名]
def trainDepthMap(**kwargs):
"""
Train model
Load the whole train data in memory for faster operations
args: **kwargs (dict) keyword arguments that specify the model hyperparameters
"""
# Roll out the parameters
batch_size = kwargs["batch_size"]
nb_train_samples = kwargs["nb_train_samples"]
nb_validation_samples = kwargs["nb_validation_samples"]
epochs = kwargs["nb_epoch"]
model_name = kwargs["model_name"]
lastLayerActivation=kwargs["lastLayerActivation"]
PercentageOfTrianable=kwargs["PercentageOfTrianable"]
SpecificPathStr=kwargs["SpecificPathStr"]
lossFunction=kwargs["lossFunction"]
if(kwargs["bnAtTheend"]!="True"):
bnAtTheend=False
else:
bnAtTheend=True
# Setup environment (logging directory etc)
#general_utils.setup_logging(model_name)
# Load and rescale data
#X_full_train, X_sketch_train, X_full_val, X_sketch_val = data_utils.load_data(dset, image_data_format)
img_dim = (256,256,3) # Manual entry
try:
print("Ok before directory this point")
generator_model=CreatErrorMapModel(input_shape=img_dim,lastLayerActivation=lastLayerActivation, PercentageOfTrianable=PercentageOfTrianable, bnAtTheend=bnAtTheend,lossFunction=lossFunction)
print("Ok before directory this point")
#-------------------------------------------------------------------------------
logpath=os.path.join('../../log','DepthMapWith'+lastLayerActivation+str(PercentageOfTrianable)+'UnTr'+SpecificPathStr)
modelPath=os.path.join('../../models','DepthMapwith'+lastLayerActivation+str(PercentageOfTrianable)+'Untr'+SpecificPathStr)
shutil.rmtree(logpath, ignore_errors=True)
shutil.rmtree(modelPath, ignore_errors=True)
os.makedirs(logpath, exist_ok=True)
os.makedirs(modelPath, exist_ok=True)
print("Ok until this point")
#-----------------------PreTraining Depth Map-------------------------------------
batchSize=batch_size
history=generator_model.fit_generator(data_utils.facades_generator(img_dim,batch_size=batch_size), samples_per_epoch=nb_train_samples,epochs=epochs,verbose=1,validation_data=data_utils.facades_generator(img_dim,batch_size=batch_size),nb_val_samples=nb_validation_samples,callbacks=[
keras.callbacks.ModelCheckpoint(os.path.join(modelPath,'DepthMap_weightsBestLoss.h5'), monitor='val_loss', verbose=1, save_best_only=True),
keras.callbacks.ModelCheckpoint(os.path.join(modelPath,'DepthMap_weightsBestAcc.h5'), monitor='acc', verbose=1, save_best_only=True),
keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.1, patience=2, verbose=1, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0),
keras.callbacks.TensorBoard(log_dir=logpath, histogram_freq=0, batch_size=batchSize, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)],)
ErrorMap_weights_path = os.path.join(modelPath,'DepthMap_weights.h5' )
generator_model.save_weights(ErrorMap_weights_path, overwrite=True)
plt.plot(history.history['loss'])
plt.savefig(logpath+"/history.png",bbox_inches='tight')
#------------------------------------------------------------------------------------
except KeyboardInterrupt:
pass