本文整理汇总了Python中data_utils.initialize_vocabulary方法的典型用法代码示例。如果您正苦于以下问题:Python data_utils.initialize_vocabulary方法的具体用法?Python data_utils.initialize_vocabulary怎么用?Python data_utils.initialize_vocabulary使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data_utils
的用法示例。
在下文中一共展示了data_utils.initialize_vocabulary方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import initialize_vocabulary [as 别名]
def __init__(self):
self.sess = tf.Session()
self.download_trained_if_not_exists()
# Create model and load parameters.
self.model = create_model(self.sess, True)
self.model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
en_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.en" % FLAGS.en_vocab_size)
fr_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.fr" % FLAGS.fr_vocab_size)
self.en_vocab, _ = data_utils.initialize_vocabulary(en_vocab_path)
_, self.rev_fr_vocab = data_utils.initialize_vocabulary(fr_vocab_path)
示例2: decode
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import initialize_vocabulary [as 别名]
def decode():
with tf.Session() as sess:
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
en_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.from" % FLAGS.from_vocab_size)
fr_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.to" % FLAGS.to_vocab_size)
en_vocab, _ = data_utils.initialize_vocabulary(en_vocab_path)
_, rev_fr_vocab = data_utils.initialize_vocabulary(fr_vocab_path)
# Decode from standard input.
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), en_vocab)
# Which bucket does it belong to?
bucket_id = len(_buckets) - 1
for i, bucket in enumerate(_buckets):
if bucket[0] >= len(token_ids):
bucket_id = i
break
else:
logging.warning("Sentence truncated: %s", sentence)
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Print out French sentence corresponding to outputs.
print(" ".join([tf.compat.as_str(rev_fr_vocab[output]) for output in outputs]))
print("> ", end="")
sys.stdout.flush()
sentence = sys.stdin.readline()
示例3: decode
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import initialize_vocabulary [as 别名]
def decode():
with tf.Session() as sess:
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
enc_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d_enc.txt" % gConfig['enc_vocab_size'])
dec_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d_dec.txt" % gConfig['dec_vocab_size'])
enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)
_, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)
# Decode sentence and store it
with open(gConfig["test_enc"], 'r') as test_enc:
with open(gConfig["output"], 'w') as predicted_headline:
sentence_count = 0
for sentence in test_enc:
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(sentence, enc_vocab)
# Which bucket does it belong to? And place the sentence to the last bucket if its token length is larger then X.
bucket_id = min([b for b in range(len(_buckets)) if _buckets[b][0] > len(token_ids)] + [len(_buckets)-1])
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Write predicted headline corresponding to article.
predicted_headline.write(" ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs])+'\n')
sentence_count += 1
if sentence_count % 100 == 0:
print("predicted data line %d" % sentence_count)
sys.stdout.flush()
predicted_headline.close()
test_enc.close()
print("Finished decoding and stored predicted results in %s!" % gConfig["output"])
示例4: decode_input
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import initialize_vocabulary [as 别名]
def decode_input():
with tf.Session() as sess:
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
enc_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d_enc.txt" % gConfig['enc_vocab_size'])
dec_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d_dec.txt" % gConfig['dec_vocab_size'])
enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)
_, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)
# Decode from standard input.
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(sentence, enc_vocab)
# Which bucket does it belong to? And place the sentence to the last bucket if its token length is larger then the bucket length.
bucket_id = min([b for b in range(len(_buckets)) if _buckets[b][0] > len(token_ids)] + [len(_buckets)-1])
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Print out French sentence corresponding to outputs.
print(" ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs]))
print("> ", end="")
sys.stdout.flush()
sentence = sys.stdin.readline()
示例5: decode
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import initialize_vocabulary [as 别名]
def decode():
with tf.Session() as sess:
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one word at a time.
# Load vocabularies.
en_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.en" % FLAGS.en_vocab_size)
hn_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.hn" % FLAGS.hn_vocab_size)
en_vocab, _ = data_utils.initialize_vocabulary(en_vocab_path)
_, rev_hn_vocab = data_utils.initialize_vocabulary(hn_vocab_path)
# Decode from standard input.
sys.stdout.write("> ")
sys.stdout.flush()
word = sys.stdin.readline()
while word:
word = word.lower()
char_list_new = list(word)
word = " ".join(char_list_new)
# Get token-ids for the input word.
token_ids = data_utils.word_to_token_ids(tf.compat.as_bytes(word), en_vocab)
# Which bucket does it belong to?
bucket_id = min([b for b in xrange(len(_buckets))
if _buckets[b][0] > len(token_ids)])
# Get a 1-element batch to feed the word to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the word.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Print out Hindi word corresponding to outputs.
print("".join([tf.compat.as_str(rev_hn_vocab[output]) for output in outputs]))
print("> ", end="")
sys.stdout.flush()
word = sys.stdin.readline()
示例6: decode
# 需要导入模块: import data_utils [as 别名]
# 或者: from data_utils import initialize_vocabulary [as 别名]
def decode():
with tf.Session() as sess:
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
en_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.input" % FLAGS.input_vocab_size)
fr_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.output" % FLAGS.output_vocab_size)
en_vocab, _ = data_utils.initialize_vocabulary(en_vocab_path)
_, rev_fr_vocab = data_utils.initialize_vocabulary(fr_vocab_path)
# Decode from standard input.
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), en_vocab)
# Which bucket does it belong to?
bucket_id = len(_buckets) - 1
for i, bucket in enumerate(_buckets):
if bucket[0] >= len(token_ids):
bucket_id = i
break
else:
logging.warning("Sentence truncated: %s", sentence)
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Print out French sentence corresponding to outputs.
print(" ".join([tf.compat.as_str(rev_fr_vocab[output]) for output in outputs]))
print("> ", end="")
sys.stdout.flush()
sentence = sys.stdin.readline()