本文整理汇总了Python中data_reader.DataReader方法的典型用法代码示例。如果您正苦于以下问题:Python data_reader.DataReader方法的具体用法?Python data_reader.DataReader怎么用?Python data_reader.DataReader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data_reader
的用法示例。
在下文中一共展示了data_reader.DataReader方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: save
# 需要导入模块: import data_reader [as 别名]
# 或者: from data_reader import DataReader [as 别名]
def save(artist, model_path, num_save):
sample_save_dir = c.get_dir('../save/samples/')
sess = tf.Session()
print artist
data_reader = DataReader(artist)
vocab = data_reader.get_vocab()
print 'Init model...'
model = LSTMModel(sess,
vocab,
c.BATCH_SIZE,
c.SEQ_LEN,
c.CELL_SIZE,
c.NUM_LAYERS,
test=True)
saver = tf.train.Saver()
sess.run(tf.initialize_all_variables())
saver.restore(sess, model_path)
print 'Model restored from ' + model_path
artist_save_dir = c.get_dir(join(sample_save_dir, artist))
for i in xrange(num_save):
print i
path = join(artist_save_dir, str(i) + '.txt')
sample = model.generate()
processed_sample = process_sample(sample)
with open(path, 'w') as f:
f.write(processed_sample)
示例2: __init__
# 需要导入模块: import data_reader [as 别名]
# 或者: from data_reader import DataReader [as 别名]
def __init__(self, model_load_path, artist_name, test, prime_text):
"""
Initializes the Lyric Generation Runner.
@param model_load_path: The path from which to load a previously-saved model.
Default = None.
@param artist_name: The name of the artist on which to train. (Used to grab data).
Default = 'kanye_west'
@param test: Whether to test or train the model. Testing generates a sequence from the
provided model and artist. Default = False.
@param prime_text: The text with which to start the test sequence.
"""
self.sess = tf.Session()
self.artist_name = artist_name
print 'Process data...'
self.data_reader = DataReader(self.artist_name)
self.vocab = self.data_reader.get_vocab()
print 'Init model...'
self.model = LSTMModel(self.sess,
self.vocab,
c.BATCH_SIZE,
c.SEQ_LEN,
c.CELL_SIZE,
c.NUM_LAYERS,
test=test)
print 'Init variables...'
self.saver = tf.train.Saver(max_to_keep=None)
self.sess.run(tf.global_variables_initializer())
# if load path specified, load a saved model
if model_load_path is not None:
self.saver.restore(self.sess, model_load_path)
print 'Model restored from ' + model_load_path
if test:
self.test(prime_text)
else:
self.train()
示例3: main
# 需要导入模块: import data_reader [as 别名]
# 或者: from data_reader import DataReader [as 别名]
def main(args):
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
coord = tf.train.Coordinator()
if args.mode == "train":
with tf.name_scope('create_inputs'):
data_reader = DataReader(
data_dir=args.train_dir,
data_list=args.train_list,
mask_window=0.4,
queue_size=args.batch_size*3,
coord=coord)
if args.valid_list is not None:
data_reader_valid = DataReader(
data_dir=args.valid_dir,
data_list=args.valid_list,
mask_window=0.4,
queue_size=args.batch_size*2,
coord=coord)
logging.info("Dataset size: train {}, valid {}".format(data_reader.num_data, data_reader_valid.num_data))
else:
data_reader_valid = None
logging.info("Dataset size: train {}".format(data_reader.num_data))
train_fn(args, data_reader, data_reader_valid)
elif args.mode == "valid" or args.mode == "test":
with tf.name_scope('create_inputs'):
data_reader = DataReader_test(
data_dir=args.data_dir,
data_list=args.data_list,
mask_window=0.4,
queue_size=args.batch_size*10,
coord=coord)
valid_fn(args, data_reader)
elif args.mode == "pred":
with tf.name_scope('create_inputs'):
if args.input_mseed:
data_reader = DataReader_mseed(
data_dir=args.data_dir,
data_list=args.data_list,
queue_size=args.batch_size*10,
coord=coord,
input_length=args.input_length)
else:
data_reader = DataReader_pred(
data_dir=args.data_dir,
data_list=args.data_list,
queue_size=args.batch_size*10,
coord=coord,
input_length=args.input_length)
pred_fn(args, data_reader, log_dir=args.output_dir)
else:
print("mode should be: train, valid, test, pred or debug")
return
示例4: test
# 需要导入模块: import data_reader [as 别名]
# 或者: from data_reader import DataReader [as 别名]
def test(self):
batch_size = 4
num_unroll_steps = 3
char_vocab_size = 51
max_word_length = 11
char_embed_size = 3
_, _, word_data, char_data, _ = load_data('data/', max_word_length)
dataset = char_data['train']
self.assertEqual(dataset.shape, (929589, max_word_length))
reader = DataReader(word_data['train'], char_data['train'], batch_size=batch_size, num_unroll_steps=num_unroll_steps)
for x, y in reader.iter():
assert x.shape == (batch_size, num_unroll_steps, max_word_length)
break
self.assertAllClose(X, x)
self.assertAllClose(Y, y)
with self.test_session() as session:
input_ = tf.placeholder(tf.int32, shape=[batch_size, num_unroll_steps, max_word_length], name="input")
''' First, embed characters '''
with tf.variable_scope('Embedding'):
char_embedding = tf.get_variable('char_embedding', [char_vocab_size, char_embed_size])
# [batch_size x max_word_length, num_unroll_steps, char_embed_size]
input_embedded = tf.nn.embedding_lookup(char_embedding, input_)
input_embedded = tf.reshape(input_embedded, [-1, max_word_length, char_embed_size])
session.run(tf.assign(char_embedding, EMBEDDING))
ie = session.run(input_embedded, {
input_: x
})
#print(x.shape)
#print(np.transpose(x, (1, 0, 2)))
#print(ie.shape)
ie = ie.reshape([batch_size, num_unroll_steps, max_word_length, char_embed_size])
ie = np.transpose(ie, (1, 0, 2, 3))
#print(ie[0,:,:,:])
self.assertAllClose(IE3, ie[0,:,:,:])
示例5: main
# 需要导入模块: import data_reader [as 别名]
# 或者: from data_reader import DataReader [as 别名]
def main(_):
config = tf.ConfigProto(allow_soft_placement=FLAGS.allow_soft_placement)
with tf.Session(config=config) as sess:
print('\n{} Model initializing'.format(datetime.now()))
model = VistaNet(FLAGS.hidden_dim, FLAGS.att_dim, FLAGS.emb_size, FLAGS.num_images, FLAGS.num_classes)
loss = loss_fn(model.labels, model.logits)
train_op = train_fn(loss, model.global_step)
accuracy = eval_fn(model.labels, model.logits)
summary_op = tf.summary.merge_all()
sess.run(tf.global_variables_initializer())
train_summary_writer.add_graph(sess.graph)
saver = tf.train.Saver(max_to_keep=FLAGS.num_checkpoints)
data_reader = DataReader(num_images=FLAGS.num_images, train_shuffle=True)
print('\n{} Start training'.format(datetime.now()))
epoch = 0
best_loss = float('inf')
while epoch < FLAGS.num_epochs:
epoch += 1
print('\n=> Epoch: {}'.format(epoch))
train(sess, data_reader, model, train_op, loss, accuracy, summary_op)
print('=> Evaluation')
print('best_loss={:.4f}'.format(best_loss))
valid_loss, valid_acc = evaluate(sess, data_reader.read_valid_set(batch_size=FLAGS.batch_size),
model, loss, accuracy, summary_op)
print('valid_loss={:.4f}, valid_acc={:.4f}'.format(valid_loss, valid_acc))
if valid_loss < best_loss:
best_loss = valid_loss
save_path = os.path.join(FLAGS.checkpoint_dir,
'epoch={}-loss={:.4f}-acc={:.4f}'.format(epoch, valid_loss, valid_acc))
saver.save(sess, save_path)
print('Best model saved @ {}'.format(save_path))
print('=> Testing')
result_file = open(
os.path.join(FLAGS.log_dir, 'loss={:.4f},acc={:.4f},epoch={}'.format(valid_loss, valid_acc, epoch)), 'w')
test(sess, data_reader, model, loss, accuracy, epoch, result_file)
print("{} Optimization Finished!".format(datetime.now()))