本文整理汇总了Python中data_loader.DataLoader方法的典型用法代码示例。如果您正苦于以下问题:Python data_loader.DataLoader方法的具体用法?Python data_loader.DataLoader怎么用?Python data_loader.DataLoader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data_loader
的用法示例。
在下文中一共展示了data_loader.DataLoader方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def __init__(self, use_cuda=USECUDA, lr=LR):
if use_cuda:
torch.cuda.manual_seed(1234)
else:
torch.manual_seed(1234)
self.kl_targ = 0.02
self.lr_multiplier = 1.
self.use_cuda = use_cuda
self.net = Net()
self.eval_net = Net()
if use_cuda:
self.net = self.net.cuda()
self.eval_net = self.eval_net.cuda()
self.dl = DataLoader(use_cuda, MINIBATCH)
self.sample_data = deque(maxlen=TRAINLEN)
self.gen_optim(lr)
self.entropy = AlphaEntropy()
示例2: build_pose_test_graph
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def build_pose_test_graph(self, input_uint8):
input_mc = self.select_tensor_or_placeholder_input(input_uint8)
loader = DataLoader()
tgt_image, src_image_stack = \
loader.batch_unpack_image_sequence(
input_mc, self.img_height, self.img_width, self.num_source)
with tf.name_scope("pose_prediction"):
pred_poses, _ = pose_net(tgt_image, src_image_stack, is_training=False)
self.pred_poses = pred_poses
示例3: get_data_loaders
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def get_data_loaders(region_feature_dim, tok2idx):
test_loader = DataLoader(args, region_feature_dim, 'test', tok2idx)
if args.test:
return test_loader, None, None
max_length = test_loader.max_length
train_loader = DataLoader(args, region_feature_dim, 'train', tok2idx)
max_length = max(max_length, train_loader.max_length)
val_loader = DataLoader(args, region_feature_dim, 'val', tok2idx, set(train_loader.phrases))
max_length = max(max_length, val_loader.max_length)
test_loader.set_max_length(max_length)
train_loader.set_max_length(max_length)
val_loader.set_max_length(max_length)
return test_loader, train_loader, val_loader
示例4: test
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def test(cfg):
entity2id = load_dict(cfg['data_folder'] + cfg['entity2id'])
word2id = load_dict(cfg['data_folder'] + cfg['word2id'])
relation2id = load_dict(cfg['data_folder'] + cfg['relation2id'])
test_documents = load_documents(cfg['data_folder'] + cfg['test_documents'])
test_document_entity_indices, test_document_texts = index_document_entities(test_documents, word2id, entity2id, cfg['max_document_word'])
test_data = DataLoader(cfg['data_folder'] + cfg['test_data'], test_documents, test_document_entity_indices, test_document_texts, word2id, relation2id, entity2id, cfg['max_query_word'], cfg['max_document_word'], cfg['use_kb'], cfg['use_doc'], cfg['use_inverse_relation'])
my_model = get_model(cfg, test_data.num_kb_relation, len(entity2id), len(word2id))
test_acc = inference(my_model, test_data, entity2id, cfg, log_info=True)
return test_acc
示例5: main
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def main():
args = parse_args()
mp.set_start_method('spawn') # Using spawn is decided.
_logger = log.get_logger(__name__, args)
_logger.info(print_args(args))
loaders = []
file_list = os.listdir(args.train_file)
random.shuffle(file_list)
for i in range(args.worker):
loader = data_loader.DataLoader(
args.train_file,
args.dict_file,
separate_conj_stmt=args.direction,
binary=args.binary,
part_no=i,
part_total=args.worker,
file_list=file_list,
norename=args.norename,
filter_abelian=args.fabelian,
compatible=args.compatible)
loaders.append(loader)
loader.start_reader()
net, mid_net, loss_fn = create_models(args, loaders[0], allow_resume=True)
# Use fake modules to replace the real ones
net = FakeModule(net)
if mid_net is not None:
mid_net = FakeModule(mid_net)
for i in range(len(loss_fn)):
loss_fn[i] = FakeModule(loss_fn[i])
opt = get_opt(net, mid_net, loss_fn, args)
inqueues = []
outqueues = []
plist = []
for i in range(args.worker):
recv_p, send_p = Pipe(False)
recv_p2, send_p2 = Pipe(False)
inqueues.append(send_p)
outqueues.append(recv_p2)
plist.append(
Process(target=worker, args=(recv_p, send_p2, loaders[i], args, i)))
plist[-1].start()
_logger.warning('Training begins')
train(inqueues, outqueues, net, mid_net, loss_fn, opt, loaders, args, _logger)
loader.destruct()
for p in plist:
p.terminate()
for loader in loaders:
loader.destruct()
_logger.warning('Training ends')
示例6: __init__
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def __init__(self):
# Input shape
self.img_rows = 32
self.img_cols = 32
self.channels = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.num_classes = 10
# Configure MNIST and MNIST-M data loader
self.data_loader = DataLoader(img_res=(self.img_rows, self.img_cols))
# Loss weights
lambda_adv = 10
lambda_clf = 1
# Calculate output shape of D (PatchGAN)
patch = int(self.img_rows / 2**4)
self.disc_patch = (patch, patch, 1)
# Number of residual blocks in the generator
self.residual_blocks = 6
optimizer = Adam(0.0002, 0.5)
# Number of filters in first layer of discriminator and classifier
self.df = 64
self.cf = 64
# Build and compile the discriminators
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='mse',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# Build the task (classification) network
self.clf = self.build_classifier()
# Input images from both domains
img_A = Input(shape=self.img_shape)
img_B = Input(shape=self.img_shape)
# Translate images from domain A to domain B
fake_B = self.generator(img_A)
# Classify the translated image
class_pred = self.clf(fake_B)
# For the combined model we will only train the generator and classifier
self.discriminator.trainable = False
# Discriminator determines validity of translated images
valid = self.discriminator(fake_B)
self.combined = Model(img_A, [valid, class_pred])
self.combined.compile(loss=['mse', 'categorical_crossentropy'],
loss_weights=[lambda_adv, lambda_clf],
optimizer=optimizer,
metrics=['accuracy'])
示例7: __init__
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def __init__(self):
# Input shape
self.img_rows = 256
self.img_cols = 256
self.channels = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
# Configure data loader
self.dataset_name = 'facades'
self.data_loader = DataLoader(dataset_name=self.dataset_name,
img_res=(self.img_rows, self.img_cols))
# Calculate output shape of D (PatchGAN)
patch = int(self.img_rows / 2**4)
self.disc_patch = (patch, patch, 1)
# Number of filters in the first layer of G and D
self.gf = 64
self.df = 64
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='mse',
optimizer=optimizer,
metrics=['accuracy'])
#-------------------------
# Construct Computational
# Graph of Generator
#-------------------------
# Build the generator
self.generator = self.build_generator()
# Input images and their conditioning images
img_A = Input(shape=self.img_shape)
img_B = Input(shape=self.img_shape)
# By conditioning on B generate a fake version of A
fake_A = self.generator(img_B)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# Discriminators determines validity of translated images / condition pairs
valid = self.discriminator([fake_A, img_B])
self.combined = Model(inputs=[img_A, img_B], outputs=[valid, fake_A])
self.combined.compile(loss=['mse', 'mae'],
loss_weights=[1, 100],
optimizer=optimizer)
示例8: main
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def main():
# Parse the JSON arguments
try:
config_args = parse_args()
except:
print("Add a config file using \'--config file_name.json\'")
exit(1)
# Create the experiment directories
_, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)
# Reset the default Tensorflow graph
tf.reset_default_graph()
# Tensorflow specific configuration
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# Data loading
data = DataLoader(config_args.batch_size, config_args.shuffle)
print("Loading Data...")
config_args.img_height, config_args.img_width, config_args.num_channels, \
config_args.train_data_size, config_args.test_data_size = data.load_data()
print("Data loaded\n\n")
# Model creation
print("Building the model...")
model = MobileNet(config_args)
print("Model is built successfully\n\n")
# Summarizer creation
summarizer = Summarizer(sess, config_args.summary_dir)
# Train class
trainer = Train(sess, model, data, summarizer)
if config_args.to_train:
try:
print("Training...")
trainer.train()
print("Training Finished\n\n")
except KeyboardInterrupt:
trainer.save_model()
if config_args.to_test:
print("Final test!")
trainer.test('val')
print("Testing Finished\n\n")
示例9: main
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def main():
# get input images
if not os.path.isdir(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
concat_img_dir = os.path.join(FLAGS.concat_img_dir, '%.2d' % FLAGS.test_seq)
max_src_offset = int((FLAGS.seq_length - 1)/2)
N = len(glob(concat_img_dir + '/*.jpg')) + 2*max_src_offset
test_frames = ['%.2d %.6d' % (FLAGS.test_seq, n) for n in range(N)]
with open(FLAGS.dataset_dir + 'sequences/%.2d/times.txt' % FLAGS.test_seq, 'r') as f:
times = f.readlines()
times = np.array([float(s[:-1]) for s in times])
with tf.Session() as sess:
# setup input tensor
loader = DataLoader(FLAGS.concat_img_dir, FLAGS.batch_size, FLAGS.img_height, FLAGS.img_width, FLAGS.seq_length-1)
image_sequence_names, tgt_inds = load_kitti_image_sequence_names(FLAGS.concat_img_dir, test_frames, FLAGS.seq_length)
image_sequence_names = complete_batch_size(image_sequence_names, FLAGS.batch_size)
tgt_inds = complete_batch_size(tgt_inds, FLAGS.batch_size)
assert len(tgt_inds) == len(image_sequence_names)
batch_sample = loader.load_test_batch(image_sequence_names)
sess.run(batch_sample.initializer)
input_batch = batch_sample.get_next()
input_batch.set_shape([FLAGS.batch_size, FLAGS.img_height, FLAGS.img_width * FLAGS.seq_length, 3])
# init system
system = DeepSlam()
system.setup_inference(FLAGS.img_height, FLAGS.img_width,
'pose', FLAGS.seq_length, FLAGS.batch_size, input_batch)
saver = tf.train.Saver([var for var in tf.trainable_variables()])
saver.restore(sess, FLAGS.ckpt_file)
round_num = len(image_sequence_names) // FLAGS.batch_size
for i in range(round_num):
pred = system.inference(sess, mode='pose')
for j in range(FLAGS.batch_size):
tgt_idx = tgt_inds[i * FLAGS.batch_size + j]
pred_poses = pred['pose'][j]
# Insert the target pose [0, 0, 0, 0, 0, 0] to the middle
pred_poses = np.insert(pred_poses, max_src_offset, np.zeros((1,6)), axis=0)
curr_times = times[tgt_idx-max_src_offset : tgt_idx+max_src_offset+1]
out_file = FLAGS.output_dir + '%.6d.txt' % (tgt_idx - max_src_offset)
dump_pose_seq_TUM(out_file, pred_poses, curr_times)
示例10: main
# 需要导入模块: import data_loader [as 别名]
# 或者: from data_loader import DataLoader [as 别名]
def main():
# Parse the JSON arguments
config_args = parse_args()
# Create the experiment directories
_, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)
# Reset the default Tensorflow graph
tf.reset_default_graph()
# Tensorflow specific configuration
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# Data loading
# The batch size is equal to 1 when testing to simulate the real experiment.
data_batch_size = config_args.batch_size if config_args.train_or_test == "train" else 1
data = DataLoader(data_batch_size, config_args.shuffle)
print("Loading Data...")
config_args.img_height, config_args.img_width, config_args.num_channels, \
config_args.train_data_size, config_args.test_data_size = data.load_data()
print("Data loaded\n\n")
# Model creation
print("Building the model...")
model = ShuffleNet(config_args)
print("Model is built successfully\n\n")
# Parameters visualization
show_parameters()
# Summarizer creation
summarizer = Summarizer(sess, config_args.summary_dir)
# Train class
trainer = Train(sess, model, data, summarizer)
if config_args.train_or_test == 'train':
try:
# print("FLOPs for batch size = " + str(config_args.batch_size) + "\n")
# calculate_flops()
print("Training...")
trainer.train()
print("Training Finished\n\n")
except KeyboardInterrupt:
trainer.save_model()
elif config_args.train_or_test == 'test':
# print("FLOPs for single inference \n")
# calculate_flops()
# This can be 'val' or 'test' or even 'train' according to the needs.
print("Testing...")
trainer.test('val')
print("Testing Finished\n\n")
else:
raise ValueError("Train or Test options only are allowed")