本文整理汇总了Python中data_load.get_batch方法的典型用法代码示例。如果您正苦于以下问题:Python data_load.get_batch方法的具体用法?Python data_load.get_batch怎么用?Python data_load.get_batch使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data_load
的用法示例。
在下文中一共展示了data_load.get_batch方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train_and_eval
# 需要导入模块: import data_load [as 别名]
# 或者: from data_load import get_batch [as 别名]
def train_and_eval(model, optimizer, criterion, ids2tokens, idx2phr):
model.train()
for step in tqdm(range(hp.n_train_steps+1)):
x, y = get_batch(hp.max_span, hp.batch_size, hp.n_classes, True)
x = x.cuda()
y = y.cuda()
optimizer.zero_grad()
logits, y_hat, _ = model(x) # logits: (N, classes), y_hat: (N,)
loss = criterion(logits, y)
loss.backward()
optimizer.step()
# evaluation
if step and step%500==0: # monitoring
eval(model, f'{hp.logdir}/{step}', ids2tokens, idx2phr)
print(f"step: {step}, loss: {loss.item()}")
model.train()
示例2: __init__
# 需要导入模块: import data_load [as 别名]
# 或者: from data_load import get_batch [as 别名]
def __init__(self, is_training=True):
self.graph = tf.Graph()
with self.graph.as_default():
if is_training:
self.x, self.y, self.num_batch = get_batch()
else: # Evaluation
self.x = tf.placeholder(tf.int32, shape=(None, hp.max_len,))
self.y = tf.placeholder(tf.int32, shape=(None, hp.max_len,))
# Character Embedding for x
self.enc = embed(self.x, len(roma2idx), hp.embed_size, scope="emb_x")
# Encoder
self.memory = encode(self.enc, is_training=is_training)
# Character Embedding for decoder_inputs
self.decoder_inputs = shift_by_one(self.y)
self.dec = embed(self.decoder_inputs, len(surf2idx), hp.embed_size, scope="emb_decoder_inputs")
# Decoder
self.outputs = decode(self.dec, self.memory, len(surf2idx), is_training=is_training) # (N, T', hp.n_mels*hp.r)
self.logprobs = tf.log(tf.nn.softmax(self.outputs)+1e-10)
self.preds = tf.arg_max(self.outputs, dimension=-1)
if is_training:
self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.y, logits=self.outputs)
self.istarget = tf.to_float(tf.not_equal(self.y, tf.zeros_like(self.y))) # masking
self.mean_loss = tf.reduce_sum(self.loss * self.istarget) / (tf.reduce_sum(self.istarget))
# Training Scheme
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer(learning_rate=hp.lr)
self.train_op = self.optimizer.minimize(self.mean_loss, global_step=self.global_step)
# Summary
tf.summary.scalar('mean_loss', self.mean_loss)
self.merged = tf.summary.merge_all()
示例3: __init__
# 需要导入模块: import data_load [as 别名]
# 或者: from data_load import get_batch [as 别名]
def __init__(self, is_training=True):
self.graph = tf.Graph()
self.is_training=is_training
with self.graph.as_default():
if is_training:
self.x, self.y, self.num_batch = get_batch()
else: # Evaluation
self.x = tf.placeholder(tf.float32, shape=(None, None, hp.n_mels*hp.r))
self.y = tf.placeholder(tf.int32, shape=(None, hp.max_len))
self.decoder_inputs = embed(shift_by_one(self.y), len(char2idx), hp.embed_size) # (N, T', E)
with tf.variable_scope('net'):
# Encoder
self.memory = encode(self.x, is_training=is_training) # (N, T, hp.n_mels*hp.r)
# Decoder
self.outputs = decode(self.decoder_inputs, self.memory, is_training=is_training) # (N, T', E)
self.logprobs = tf.log(tf.nn.softmax(self.outputs)+1e-10)
self.preds = tf.arg_max(self.outputs, dimension=-1)
if is_training:
# Loss
self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.y, logits=self.outputs)
# Target masking
self.istarget = tf.to_float(tf.not_equal(self.y, 0))
self.mean_loss = tf.reduce_sum(self.loss*self.istarget) / (tf.reduce_sum(self.istarget) + 1e-7)
# Training Scheme
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer(learning_rate=hp.lr)
self.train_op = self.optimizer.minimize(self.mean_loss, global_step=self.global_step)
# Summary
tf.summary.scalar('mean_loss', self.mean_loss)
self.merged = tf.summary.merge_all()
示例4: eval
# 需要导入模块: import data_load [as 别名]
# 或者: from data_load import get_batch [as 别名]
def eval(model, f, ids2tokens, idx2phr):
model.eval()
Y, Y_hat = [], []
with torch.no_grad():
x, y = get_batch(hp.max_span, hp.batch_size, hp.n_classes, False)
x = x.cuda()
_, y_hat, _ = model(x) # y_hat: (N, n_candidates)
x = x.cpu().numpy().tolist()
y = y.cpu().numpy().tolist()
y_hat = y_hat.cpu().numpy().tolist()
Y.extend(y)
Y_hat.extend(y_hat)
# monitoring
pointer = random.randint(0, len(x)-1)
xx, yy, yy_hat = x[pointer], y[pointer], y_hat[pointer] # one sample
tokens = ids2tokens(xx) # this is a function.
ctx = " ".join(tokens).replace(" ##", "").split("[PAD]")[0] # bert detokenization
gt = idx2phr[yy] # this is a dict.
ht = " | ".join(idx2phr[each] for each in yy_hat)
print(f"context: {ctx}")
print(f"ground truth: {gt}")
print(f"predictions: {ht}")
# calc acc.
n_samples = len(Y)
n_correct = 0
for y, y_hat in zip(Y, Y_hat):
if y in y_hat:
n_correct += 1
acc = n_correct / n_samples
print(f"acc@{hp.n_candidates}: %.2f"%acc)
acc = str(round(acc, 2))
torch.save(model.state_dict(), f"{f}_ACC{acc}.pt")
示例5: __init__
# 需要导入模块: import data_load [as 别名]
# 或者: from data_load import get_batch [as 别名]
def __init__(self,is_training = True, demo = False):
# Build the computational graph when initializing
self.is_training = is_training
self.graph = tf.Graph()
with self.graph.as_default():
self.global_step = tf.Variable(0, name='global_step', trainable=False)
if demo:
self.passage_w = tf.placeholder(tf.int32,
[1, Params.max_p_len,],"passage_w")
self.question_w = tf.placeholder(tf.int32,
[1, Params.max_q_len,],"passage_q")
self.passage_c = tf.placeholder(tf.int32,
[1, Params.max_p_len,Params.max_char_len],"passage_pc")
self.question_c = tf.placeholder(tf.int32,
[1, Params.max_q_len,Params.max_char_len],"passage_qc")
self.passage_w_len_ = tf.placeholder(tf.int32,
[1,1],"passage_w_len_")
self.question_w_len_ = tf.placeholder(tf.int32,
[1,1],"question_w_len_")
self.passage_c_len = tf.placeholder(tf.int32,
[1, Params.max_p_len],"passage_c_len")
self.question_c_len = tf.placeholder(tf.int32,
[1, Params.max_q_len],"question_c_len")
self.data = (self.passage_w,
self.question_w,
self.passage_c,
self.question_c,
self.passage_w_len_,
self.question_w_len_,
self.passage_c_len,
self.question_c_len)
else:
self.data, self.num_batch = get_batch(is_training = is_training)
(self.passage_w,
self.question_w,
self.passage_c,
self.question_c,
self.passage_w_len_,
self.question_w_len_,
self.passage_c_len,
self.question_c_len,
self.indices) = self.data
self.passage_w_len = tf.squeeze(self.passage_w_len_, -1)
self.question_w_len = tf.squeeze(self.question_w_len_, -1)
self.encode_ids()
self.params = get_attn_params(Params.attn_size, initializer = tf.contrib.layers.xavier_initializer)
self.attention_match_rnn()
self.bidirectional_readout()
self.pointer_network()
self.outputs()
if is_training:
self.loss_function()
self.summary()
self.init_op = tf.global_variables_initializer()
total_params()