本文整理汇总了Python中data_helpers.batch_iter方法的典型用法代码示例。如果您正苦于以下问题:Python data_helpers.batch_iter方法的具体用法?Python data_helpers.batch_iter怎么用?Python data_helpers.batch_iter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data_helpers
的用法示例。
在下文中一共展示了data_helpers.batch_iter方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dev_step
# 需要导入模块: import data_helpers [as 别名]
# 或者: from data_helpers import batch_iter [as 别名]
def dev_step(x_dev, y_dev):
"""
Evaluates model on a dev set
"""
batches = data_helpers.batch_iter(
list(zip(x_dev, y_dev)), FLAGS.batch_size, 1)
loss_sum = 0
accuracy_sum = 0
count = 0
for batch in batches:
x_batch, y_batch = zip(*batch)
feed_dict = {
rnn.input_x: x_batch,
rnn.input_y: y_batch,
rnn.dropout_keep_prob: 1.0,
rnn.batch_size: len(x_batch),
rnn.real_len: real_len(x_batch)
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, rnn.loss, rnn.accuracy],
feed_dict)
loss_sum = loss_sum + loss
accuracy_sum = accuracy_sum + loss
count = count + 1
loss = loss_sum / count
accuracy = accuracy_sum / count
time_str = datetime.datetime.now().isoformat()
logger.info("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
dev_summary_writer.add_summary(summaries, step)
# Generate batches
示例2: getSentimentCNN
# 需要导入模块: import data_helpers [as 别名]
# 或者: from data_helpers import batch_iter [as 别名]
def getSentimentCNN(fileToLoad, modelDir):
checkpoint_dir = "./rnn_runs/"+modelDir+"/checkpoints/"
batch_size = 64
x_test, y_test, vocabulary, vocabulary_inv,trainS = data_helpers.load_data_for_books("./data/"+fileToLoad+".txt")
y_test = np.argmax(y_test, axis=1)
print("Vocabulary size: {:d}".format(len(vocabulary)))
print("Test set size {:d}".format(len(y_test)))
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_x = graph.get_operation_by_name("input_x").outputs[0]
# input_y = graph.get_operation_by_name("input_y").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
scores = graph.get_operation_by_name("output/scores").outputs[0]
# Generate batches for one epoch
batches = data_helpers.batch_iter(x_test, batch_size, 1, shuffle=False)
# Collect the predictions here
all_predictions = []
all_scores = []
for x_test_batch in batches:
batch_scores = sess.run(scores, {input_x: x_test_batch, dropout_keep_prob: 1.0})
batch_predictions = np.argmax(batch_scores,axis=1)
#batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0})
all_predictions = np.concatenate([all_predictions, batch_predictions])
all_scores = np.concatenate([all_scores,batch_scores[:,1] - batch_scores[:,0]])
mbs = float(len(all_predictions[all_predictions == 1]))/len(all_predictions)
mss = np.mean(all_scores)
print "Mean Binary Sentiment",mbs
print "Mean Smooth Sentiment",mss
return all_predictions,all_scores
示例3: getSentimentRNN
# 需要导入模块: import data_helpers [as 别名]
# 或者: from data_helpers import batch_iter [as 别名]
def getSentimentRNN(fileToLoad,modelDir):
checkpoint_dir = "./rnn_runs/"+modelDir+"/checkpoints/"
batch_size = 64
n_hidden = 256
x_test, y_test, vocabulary, vocabulary_inv,trainS = data_helpers.load_data_for_books("./data/"+fileToLoad+".txt")
y_test = np.argmax(y_test, axis=1)
print("Vocabulary size: {:d}".format(len(vocabulary)))
print("Test set size {:d}".format(len(y_test)))
x_test = np.fliplr(x_test)
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
print("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_x = graph.get_operation_by_name("x_input").outputs[0]
predictions = graph.get_operation_by_name("prediction").outputs[0]
istate = graph.get_operation_by_name('initial_state').outputs[0]
keep_prob = graph.get_operation_by_name('keep_prob').outputs[0]
# Generate batches for one epoch
batches = data_helpers.batch_iter(x_test, batch_size, 1, shuffle=False)
# Collect the predictions here
all_predictions = []
all_scores = []
for x_test_batch in batches:
batch_predictions = sess.run(predictions, {input_x: x_test_batch, istate: np.zeros((len(x_test_batch), 2*n_hidden)), keep_prob: 1.0})
binaryPred = np.argmax(batch_predictions,axis=1)
all_predictions = np.concatenate([all_predictions, binaryPred])
all_scores = np.concatenate([all_scores, batch_predictions[:,1] - batch_predictions[:,0]])
mbs = float(len(all_predictions[all_predictions == 1]))/len(all_predictions)
mss = np.mean(all_scores)
print "Mean Binary Sentiment",mbs
print "Mean Smooth Sentiment",mss
return all_predictions,all_scores
示例4: eval
# 需要导入模块: import data_helpers [as 别名]
# 或者: from data_helpers import batch_iter [as 别名]
def eval():
with tf.device('/cpu:0'):
x_text, y = data_helpers.load_data_and_labels(FLAGS.pos_dir, FLAGS.neg_dir)
# Map data into vocabulary
text_path = os.path.join(FLAGS.checkpoint_dir, "..", "text_vocab")
text_vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor.restore(text_path)
x_eval = np.array(list(text_vocab_processor.transform(x_text)))
y_eval = np.argmax(y, axis=1)
checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
# Get the placeholders from the graph by name
input_text = graph.get_operation_by_name("input_text").outputs[0]
# input_y = graph.get_operation_by_name("input_y").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
# Generate batches for one epoch
batches = data_helpers.batch_iter(list(x_eval), FLAGS.batch_size, 1, shuffle=False)
# Collect the predictions here
all_predictions = []
for x_batch in batches:
batch_predictions = sess.run(predictions, {input_text: x_batch,
dropout_keep_prob: 1.0})
all_predictions = np.concatenate([all_predictions, batch_predictions])
correct_predictions = float(sum(all_predictions == y_eval))
print("Total number of test examples: {}".format(len(y_eval)))
print("Accuracy: {:g}".format(correct_predictions / float(len(y_eval))))