本文整理汇总了Python中data.view方法的典型用法代码示例。如果您正苦于以下问题:Python data.view方法的具体用法?Python data.view怎么用?Python data.view使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data
的用法示例。
在下文中一共展示了data.view方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: evaluate
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
if args.model != 'Transformer':
hidden = model.init_hidden(eval_batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
if args.model == 'Transformer':
output = model(data)
else:
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).item()
return total_loss / (len(data_source) - 1)
示例2: get_batch
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def get_batch(source, i, train):
if train:
i = torch.randint(low=0, high=(len(source) - args.bptt), size=(1,)).long().item()
seq_len = args.bptt
target = source[i + 1:i + 1 + seq_len].t()
else:
seq_len = min(args.bptt, len(source) - 1 - i)
target = source[i + seq_len, :]
data = source[i:i + seq_len].t()
data_mask = (data != pad).unsqueeze(-2)
target_mask = make_std_mask(data.long())
# reshape target to match what cross_entropy expects
target = target.contiguous().view(-1)
return data, target, data_mask, target_mask
开发者ID:nadavbh12,项目名称:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代码行数:20,代码来源:main.py
示例3: evaluate
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
if args.model != 'Transformer':
hidden = model.init_hidden(eval_batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
if args.model == 'Transformer':
output = model(data)
output = output.view(-1, ntokens)
else:
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
total_loss += len(data) * criterion(output, targets).item()
return total_loss / (len(data_source) - 1)
示例4: batchify
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
if isinstance(data, tuple):
nbatch = data[0].size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
tag_data = data[1].narrow(0, 0, nbatch * bsz)
data = data[0].narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
tag_data = tag_data.view(bsz, -1).t().contiguous()
else:
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
# Turning the data over to CUDA at this point may lead to more OOM errors
#if args.cuda:
# data = data.cuda()
if isinstance(data,tuple):
return data, tag_data
return data
示例5: evaluate
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def evaluate(lm_data_source, ccg_data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
if (not args.single) and (torch.cuda.device_count() > 1):
#"module" is necessary when using DataParallel
hidden = model.module.init_hidden(eval_batch_size)
else:
hidden = model.init_hidden(eval_batch_size)
for i in range(0, lm_data_source.size(0) + ccg_data_source.size(0) - 1, args.bptt):
# TAG
if i > lm_data_source.size(0):
data, targets = get_batch(ccg_data_source, i - lm_data_source.size(0), evaluation=True)
# LM
else:
data, targets = get_batch(lm_data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
curr_loss = len(data) * criterion(output_flat, targets).data
total_loss += curr_loss
hidden = repackage_hidden(hidden)
if len(ccg_data_source) == 0:
return total_loss / len(lm_data_source)
return total_loss[0] / (len(lm_data_source)+len(ccg_data_source))
示例6: batchify
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def batchify(data, batch_size):
# Work out how cleanly we can divide the dataset into batch_size parts.
nbatch = data.size(0) // batch_size
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * batch_size)
# Evenly divide the data across the batch_size batches.
data = data.view(batch_size, -1).t().contiguous()
return data.to(device)
开发者ID:nadavbh12,项目名称:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代码行数:10,代码来源:main.py
示例7: batchify
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
return data.to(device)
示例8: get_batch
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def get_batch(source, i):
seq_len = min(args.bptt, len(source) - 1 - i)
data = source[i:i + seq_len]
target = source[i + 1:i + 1 + seq_len].view(-1)
return data, target
示例9: export_onnx
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def export_onnx(path, batch_size, seq_len):
print('The model is also exported in ONNX format at {}'.
format(os.path.realpath(args.onnx_export)))
model.eval()
dummy_input = torch.LongTensor(seq_len * batch_size).zero_().view(-1, batch_size).to(device)
hidden = model.init_hidden(batch_size)
torch.onnx.export(model, (dummy_input, hidden), path)
# Loop over epochs.
示例10: batchify
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
if args.cuda:
data = data.cuda()
return data
示例11: get_batch
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def get_batch(source, i, evaluation=False):
seq_len = min(args.bptt, len(source) - 1 - i)
data = Variable(source[i:i + seq_len], volatile=evaluation)
target = Variable(source[i + 1:i + 1 + seq_len].view(-1))
return data, target
示例12: evaluate
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
示例13: train
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(args.batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = repackage_hidden(hidden)
model.zero_grad()
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
for p in model.parameters():
p.data.add_(-lr, p.grad.data)
total_loss += loss.data
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
# Loop over epochs.
示例14: batchify
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def batchify(data, bsz, args):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
if args.cuda:
data = data.cuda()
return data
示例15: get_batch
# 需要导入模块: import data [as 别名]
# 或者: from data import view [as 别名]
def get_batch(source, i, args, seq_len=None):
seq_len = min(seq_len if seq_len else args.bptt, len(source) - 1 - i)
data = source[i:i+seq_len]
target = source[i+1:i+1+seq_len].view(-1)
return data, target