本文整理汇总了Python中data.get_test_loader方法的典型用法代码示例。如果您正苦于以下问题:Python data.get_test_loader方法的具体用法?Python data.get_test_loader怎么用?Python data.get_test_loader使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类data
的用法示例。
在下文中一共展示了data.get_test_loader方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: eval_with_extended
# 需要导入模块: import data [as 别名]
# 或者: from data import get_test_loader [as 别名]
def eval_with_extended(model_path, data_path=None, data_name=None, split='test'):
checkpoint = torch.load(model_path)
opt = checkpoint['opt']
opt.use_external_captions = True
opt.negative_number = 5
if data_path is not None:
opt.data_path = data_path
if data_name is not None:
opt.data_name = data_name
# load vocabulary used by the model
with open(os.path.join(opt.vocab_path,
'%s_vocab.pkl' % opt.data_name), 'rb') as f:
vocab = pickle.load(f)
opt.vocab_size = len(vocab)
opt.use_external_captions = True
# construct model
model = VSE(opt)
# load model state
model.load_state_dict(checkpoint['model'])
print('Loading dataset')
data_loader = get_test_loader(split, opt.data_name, vocab, opt.crop_size,
opt.batch_size, opt.workers, opt)
print('Computing results...')
img_embs, cap_embs = encode_data(model, data_loader)
print('Images: %d, Captions: %d' %
(img_embs.shape[0] // 5, cap_embs.shape[0]))
r, rt = i2t_text_only(img_embs, cap_embs, measure=opt.measure, return_ranks=True)
ar = (r[0] + r[1] + r[2]) / 3
print("Average i2t Recall: %.1f" % ar)
print("Image to text: %.1f\t%.1f\t%.1f\t%.1f\t%.1f" % r)
torch.save({'rt': rt}, model_path[:model_path.find('model_best')] + 'ranks_extended.pth.tar')
示例2: eval_with_single_extended
# 需要导入模块: import data [as 别名]
# 或者: from data import get_test_loader [as 别名]
def eval_with_single_extended(model_path, data_path=None, data_name=None, split='test', backup_vec_ex=None):
checkpoint = torch.load(model_path)
opt = checkpoint['opt']
opt.use_external_captions = False
if data_path is not None:
opt.data_path = data_path
if data_name is not None:
opt.data_name = data_name
# load vocabulary used by the model
with open(os.path.join(opt.vocab_path,
'%s_vocab.pkl' % opt.data_name), 'rb') as f:
vocab = pickle.load(f)
opt.vocab_size = len(vocab)
# construct model
model = VSE(opt)
# load model state
model.load_state_dict(checkpoint['model'])
print('Loading dataset')
data_loader = get_test_loader(split, opt.data_name, vocab, opt.crop_size,
opt.batch_size, opt.workers, opt)
img_embs, cap_embs = encode_data(model, data_loader)
if backup_vec_ex is None:
cap_embs_ex = list()
for i in range(img_embs.shape[0]):
data_loader_ex = get_text_loader(
split, opt.data_name, vocab, opt.batch_size, opt.workers, opt, 'ex/%d' % i)
encoding = encode_data(model, data_loader_ex)[1]
if encoding is not None:
cap_embs_ex.append(encoding.copy())
else:
cap_embs_ex.append(np.zeros(cap_embs[:1].shape))
print('Caption Embedding: %d' % i)
# torch.save(cap_embs_ex, 'data/coco_precomp/cap_embs_ex.pth')
else:
cap_embs_ex = torch.load(backup_vec_ex)
print('Computing results...')
r, rt = i2t_split(img_embs, cap_embs, cap_embs_ex, measure=opt.measure, return_ranks=True)
ar = (r[0] + r[1] + r[2]) / 3
print("Average i2t Recall: %.1f" % ar)
print("Image to text: %.1f\t%.1f\t%.1f\t%.1f\t%.1f" % r)
torch.save({'rt': rt}, model_path[:model_path.find('model_best')] + 'ranks_single_extended.pth.tar')
示例3: eval_with_manually_extended
# 需要导入模块: import data [as 别名]
# 或者: from data import get_test_loader [as 别名]
def eval_with_manually_extended(model_path, data_path=None, split='test'):
checkpoint = torch.load(model_path)
opt = checkpoint['opt']
opt.use_external_captions = False
if data_path is not None:
opt.data_path = data_path
# load vocabulary used by the model
with open(os.path.join(opt.vocab_path,
'%s_vocab.pkl' % opt.data_name), 'rb') as f:
vocab = pickle.load(f)
opt.vocab_size = len(vocab)
# construct model
model = VSE(opt)
# load model state
model.load_state_dict(checkpoint['model'])
print('Loading dataset')
data_loader = get_test_loader(split, opt.data_name, vocab, opt.crop_size,
opt.batch_size, opt.workers, opt)
img_embs, cap_embs = encode_data(model, data_loader)
img_embs = img_embs[:100]
cap_embs = cap_embs[:100]
cap_embs_ex = list()
data_loader_ex_0 = get_text_loader(
split, opt.data_name, vocab, opt.batch_size, opt.workers, opt, 'manually_ex_%d' % 0)
encoding_0 = encode_data(model, data_loader_ex_0)[1]
data_loader_ex_1 = get_text_loader(
split, opt.data_name, vocab, opt.batch_size, opt.workers, opt, 'manually_ex_%d' % 1)
encoding_1 = encode_data(model, data_loader_ex_1)[1]
for i in range(100):
cap_emb = np.concatenate((encoding_0[i*2:i*2+2], encoding_1[i*2:i*2+2]), axis=0)
cap_embs_ex.append(cap_emb)
print('Computing results...')
r, rt = i2t_split(img_embs, cap_embs, cap_embs_ex, measure=opt.measure, return_ranks=True)
# r, rt = i2t(img_embs, cap_embs, measure=opt.measure, return_ranks=True)
ar = (r[0] + r[1] + r[2]) / 3
print("Average i2t Recall: %.1f" % ar)
print("Image to text: %.1f %.1f %.1f %.1f %.1f" % r)
torch.save({'rt': rt}, model_path[:model_path.find('model_best')] + 'ranks_manually_extended_1.pth.tar')
示例4: debug_show_similarity_with_manually_created_examples
# 需要导入模块: import data [as 别名]
# 或者: from data import get_test_loader [as 别名]
def debug_show_similarity_with_manually_created_examples(model_path, data_path=None, split='test'):
checkpoint = torch.load(model_path)
opt = checkpoint['opt']
opt.use_external_captions = False
if data_path is not None:
opt.data_path = data_path
# load vocabulary used by the model
with open(os.path.join(opt.vocab_path,
'%s_vocab.pkl' % opt.data_name), 'rb') as f:
vocab = pickle.load(f)
opt.vocab_size = len(vocab)
# construct model
model = VSE(opt)
# load model state
model.load_state_dict(checkpoint['model'])
print('Loading dataset')
data_loader = get_test_loader(split, opt.data_name, vocab, opt.crop_size,
opt.batch_size, opt.workers, opt)
img_embs, cap_embs = encode_data(model, data_loader)
img_embs = img_embs[:100]
cap_embs = cap_embs[:100]
data_loader_ex_0 = get_text_loader(
split, opt.data_name, vocab, opt.batch_size, opt.workers, opt, 'manually_ex_%d' % 0)
encoding_0 = encode_data(model, data_loader_ex_0)[1]
data_loader_ex_1 = get_text_loader(
split, opt.data_name, vocab, opt.batch_size, opt.workers, opt, 'manually_ex_%d' % 1)
encoding_1 = encode_data(model, data_loader_ex_1)[1]
print('Computing results...')
# compute similarity
result = list()
result_0 = list()
result_1 = list()
npts = img_embs.shape[0] // 5
for index in range(npts):
# Get query image
im = img_embs[5 * index].reshape(1, img_embs.shape[1])
# Compute scores
if opt.measure == 'order':
raise Exception('Measure order not supported.')
else:
result.append(numpy.dot(im, cap_embs.T).flatten())
result_0.append(numpy.dot(im, encoding_0.T).flatten())
result_1.append(numpy.dot(im, encoding_1.T).flatten())
torch.save({'orig': result, 'Tete': result_0, 'Haoyue': result_1}, 'shy_runs/debug.pt')
示例5: evalrank
# 需要导入模块: import data [as 别名]
# 或者: from data import get_test_loader [as 别名]
def evalrank(model, args, split='test'):
print('Loading dataset')
data_loader = get_test_loader(args, vocab)
print('Computing results... (eval_on_gpu={})'.format(args.eval_on_gpu))
img_embs, txt_embs = encode_data(model, data_loader, args.eval_on_gpu)
n_samples = img_embs.shape[0]
nreps = 5 if args.data_name == 'coco' else 1
print('Images: %d, Sentences: %d' % (img_embs.shape[0] / nreps, txt_embs.shape[0]))
# 5fold cross-validation, only for MSCOCO
mean_metrics = None
if args.data_name == 'coco':
results = []
for i in range(5):
r, rt0 = i2t(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000],
nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu)
r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples)
print("Image to text: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % r)
ri, rti0 = t2i(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000],
nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu)
if i == 0:
rt, rti = rt0, rti0
ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples)
print("Text to image: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % ri)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
print("rsum: %.2f ar: %.2f ari: %.2f" % (rsum, ar, ari))
results += [list(r) + list(ri) + [ar, ari, rsum]]
mean_metrics = tuple(np.array(results).mean(axis=0).flatten())
print("-----------------------------------")
print("Mean metrics from 5-fold evaluation: ")
print("rsum: %.2f" % (mean_metrics[-1] * 6))
print("Average i2t Recall: %.2f" % mean_metrics[-3])
print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[:7])
print("Average t2i Recall: %.2f" % mean_metrics[-2])
print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[7:14])
# no cross-validation, full evaluation
r, rt = i2t(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu)
ri, rti = t2i(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples)
ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples)
print("rsum: %.2f" % rsum)
print("Average i2t Recall: %.2f" % ar)
print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % r)
print("Average t2i Recall: %.2f" % ari)
print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % ri)
return mean_metrics
示例6: test_CAMP_model
# 需要导入模块: import data [as 别名]
# 或者: from data import get_test_loader [as 别名]
def test_CAMP_model(config_path):
print("OK!")
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
parser = argparse.ArgumentParser()
#config_path = "./experiments/f30k_cross_attention/config_test.yaml"
with open(config_path) as f:
opt = yaml.load(f)
opt = EasyDict(opt['common'])
vocab = pickle.load(open(os.path.join(opt.vocab_path,
'%s_vocab.pkl' % opt.data_name), 'rb'))
opt.vocab_size = len(vocab)
train_logger = LogCollector()
print("----Start init model----")
CAMP = model.CAMP(opt)
CAMP.logger = train_logger
if opt.resume is not None:
ckp = torch.load(opt.resume)
CAMP.load_state_dict(ckp["model"])
CAMP.train_start()
print("----Model init success----")
"""
fake_img = torch.randn(16, 36, opt.img_dim)
fake_text = torch.ones(16, 32).long()
fake_lengths = torch.Tensor([32] * 16)
fake_pos = torch.ones(16, 32).long()
fake_ids = torch.ones(16).long()
CAMP.train_emb(fake_img, fake_text, fake_lengths,
instance_ids=fake_ids)
print("----Test train_emb success----")
"""
train_loader, val_loader = data.get_loaders(
opt.data_name, vocab, opt.crop_size, 128, 4, opt)
test_loader = data.get_test_loader("test", opt.data_name, vocab, opt.crop_size, 128, 4, opt)
CAMP.val_start()
img_embs, cap_embs, cap_masks = encode_data(
CAMP, test_loader, opt.log_step, logging.info)
(r1, r5, r10, medr, meanr), (r1i, r5i, r10i, medri, meanri), score_matrix= i2t(img_embs, cap_embs, cap_masks, measure=opt.measure,
model=CAMP, return_ranks=True)
logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1, r5, r10, medr, meanr))
logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
(r1i, r5i, r10i, medri, meanri))