当前位置: 首页>>代码示例>>Python>>正文


Python data.coco方法代码示例

本文整理汇总了Python中data.coco方法的典型用法代码示例。如果您正苦于以下问题:Python data.coco方法的具体用法?Python data.coco怎么用?Python data.coco使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在data的用法示例。


在下文中一共展示了data.coco方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        if(size==300):
            self.cfg = (coco, voc300)[num_classes == 21]
        else:
            self.cfg = (coco, voc512)[num_classes == 21]
        self.priorbox = PriorBox(self.cfg)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45) 
开发者ID:soo89,项目名称:CSD-SSD,代码行数:26,代码来源:ssd.py

示例2: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, num_classes, overlap_thresh, prior_for_matching,
                 bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
                 use_gpu=True, theta=0.01, use_ARM=False):
        super(RefineDetMultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance']
        self.theta = theta
        self.use_ARM = use_ARM 
开发者ID:luuuyi,项目名称:RefineDet.PyTorch,代码行数:18,代码来源:refinedet_multibox_loss.py

示例3: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, phase,model, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = (coco, voc)[num_classes == 21]
        self.priorbox = PriorBox(self.cfg)
        self.priors = Variable(self.priorbox.forward(), requires_grad=True)
        self.size = size
        self.model=model
        # SSD network
        self.base = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm( 512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45) 
开发者ID:yczhang1017,项目名称:SSD_resnet_pytorch,代码行数:23,代码来源:ssd.py

示例4: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.cfg = (coco, voc)[num_classes == 21]
        self.priorbox = PriorBox(self.cfg)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        if phase == 'test':
            self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45) 
开发者ID:bailvwangzi,项目名称:repulsion_loss_ssd,代码行数:23,代码来源:ssd.py

示例5: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, num_classes, overlap_thresh, prior_for_matching,
                 bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
                 use_gpu=True, theta=0.01, use_ARM=False):
        super(softRefineDetMultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance']
        self.theta = theta
        self.use_ARM = use_ARM 
开发者ID:wei-yuma,项目名称:multitrident,代码行数:18,代码来源:softrefinedet_multibox_loss.py

示例6: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, num_classes, overlap_thresh, prior_for_matching,
                 bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
                 use_gpu=True, theta=0.01, use_ARM=False):
        super(RPRefineDetMultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance']
        self.theta = theta
        self.use_ARM = use_ARM 
开发者ID:wei-yuma,项目名称:multitrident,代码行数:18,代码来源:regionpooling_multibox_loss.py

示例7: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, phase, size, base, extras, head, num_classes):
        super(SSD_CON, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        if(size==300):
            self.cfg = (coco, voc300)[num_classes == 21]
        else:
            self.cfg = (coco, voc512)[num_classes == 21]
        self.priorbox = PriorBox(self.cfg)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.size = size

        # SSD network
        self.vgg = nn.ModuleList(base)
        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        self.softmax = nn.Softmax(dim=-1)

        if phase == 'test':
            # self.softmax = nn.Softmax(dim=-1)
            self.detect = Detect(num_classes, 0, 200, 0.01, 0.45) 
开发者ID:soo89,项目名称:CSD-SSD,代码行数:28,代码来源:csd.py

示例8: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, num_classes, overlap_thresh, prior_for_matching,
                 bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
                 use_gpu=True):
        super(MultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap = neg_overlap
        self.variance = cfg['variance'] 
开发者ID:soo89,项目名称:CSD-SSD,代码行数:16,代码来源:multibox_loss.py

示例9: __init__

# 需要导入模块: import data [as 别名]
# 或者: from data import coco [as 别名]
def __init__(self, use_gpu=True, sigma=0.):
        super(RepulsionLoss, self).__init__()
        self.use_gpu = use_gpu
        self.variance = cfg['variance']
        self.sigma = sigma
        
    # TODO 
开发者ID:bailvwangzi,项目名称:repulsion_loss_ssd,代码行数:9,代码来源:repulsion_loss.py


注:本文中的data.coco方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。