当前位置: 首页>>代码示例>>Python>>正文


Python data.Ids2Words方法代码示例

本文整理汇总了Python中data.Ids2Words方法的典型用法代码示例。如果您正苦于以下问题:Python data.Ids2Words方法的具体用法?Python data.Ids2Words怎么用?Python data.Ids2Words使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在data的用法示例。


在下文中一共展示了data.Ids2Words方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _DecodeBatch

# 需要导入模块: import data [as 别名]
# 或者: from data import Ids2Words [as 别名]
def _DecodeBatch(self, article, abstract, output_ids):
    """Convert id to words and writing results.

    Args:
      article: The original article string.
      abstract: The human (correct) abstract string.
      output_ids: The abstract word ids output by machine.
    """
    decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab))
    end_p = decoded_output.find(data.SENTENCE_END, 0)
    if end_p != -1:
      decoded_output = decoded_output[:end_p]
    tf.logging.info('article:  %s', article)
    tf.logging.info('abstract: %s', abstract)
    tf.logging.info('decoded:  %s', decoded_output)
    self._decode_io.Write(abstract, decoded_output.strip()) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:seq2seq_attention_decode.py

示例2: _Eval

# 需要导入模块: import data [as 别名]
# 或者: from data import Ids2Words [as 别名]
def _Eval(model, data_batcher, vocab=None):
  """Runs model eval."""
  model.build_graph()
  saver = tf.train.Saver()
  summary_writer = tf.summary.FileWriter(FLAGS.eval_dir)
  sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
  running_avg_loss = 0
  step = 0
  while True:
    time.sleep(FLAGS.eval_interval_secs)
    try:
      ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
    except tf.errors.OutOfRangeError as e:
      tf.logging.error('Cannot restore checkpoint: %s', e)
      continue

    if not (ckpt_state and ckpt_state.model_checkpoint_path):
      tf.logging.info('No model to eval yet at %s', FLAGS.train_dir)
      continue

    tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
    saver.restore(sess, ckpt_state.model_checkpoint_path)

    (article_batch, abstract_batch, targets, article_lens, abstract_lens,
     loss_weights, _, _) = data_batcher.NextBatch()
    (summaries, loss, train_step) = model.run_eval_step(
        sess, article_batch, abstract_batch, targets, article_lens,
        abstract_lens, loss_weights)
    tf.logging.info(
        'article:  %s',
        ' '.join(data.Ids2Words(article_batch[0][:].tolist(), vocab)))
    tf.logging.info(
        'abstract: %s',
        ' '.join(data.Ids2Words(abstract_batch[0][:].tolist(), vocab)))

    summary_writer.add_summary(summaries, train_step)
    running_avg_loss = _RunningAvgLoss(
        running_avg_loss, loss, summary_writer, train_step)
    if step % 100 == 0:
      summary_writer.flush() 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:42,代码来源:seq2seq_attention.py

示例3: _Eval

# 需要导入模块: import data [as 别名]
# 或者: from data import Ids2Words [as 别名]
def _Eval(model, data_batcher, vocab=None):
  """Runs model eval."""
  model.build_graph()
  saver = tf.train.Saver()
  summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir)
  sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
  running_avg_loss = 0
  step = 0
  while True:
    time.sleep(FLAGS.eval_interval_secs)
    try:
      ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
    except tf.errors.OutOfRangeError as e:
      tf.logging.error('Cannot restore checkpoint: %s', e)
      continue

    if not (ckpt_state and ckpt_state.model_checkpoint_path):
      tf.logging.info('No model to eval yet at %s', FLAGS.train_dir)
      continue

    tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
    saver.restore(sess, ckpt_state.model_checkpoint_path)

    (article_batch, abstract_batch, targets, article_lens, abstract_lens,
     loss_weights, _, _) = data_batcher.NextBatch()
    (summaries, loss, train_step) = model.run_eval_step(
        sess, article_batch, abstract_batch, targets, article_lens,
        abstract_lens, loss_weights)
    tf.logging.info(
        'article:  %s',
        ' '.join(data.Ids2Words(article_batch[0][:].tolist(), vocab)))
    tf.logging.info(
        'abstract: %s',
        ' '.join(data.Ids2Words(abstract_batch[0][:].tolist(), vocab)))

    summary_writer.add_summary(summaries, train_step)
    running_avg_loss = _RunningAvgLoss(
        running_avg_loss, loss, summary_writer, train_step)
    if step % 100 == 0:
      summary_writer.flush() 
开发者ID:coderSkyChen,项目名称:Action_Recognition_Zoo,代码行数:42,代码来源:seq2seq_attention.py

示例4: _DecodeBatch

# 需要导入模块: import data [as 别名]
# 或者: from data import Ids2Words [as 别名]
def _DecodeBatch(self, source, targets, dec_outputs):
    """Converts id to words and writes results.

    Args:
      source: The original source string.
      targets: The human (correct) target string.
      dec_outputs: The target word ids output by machine.

    Returns:
      List of metric scores for this batch.
    """
    output = ['None'] * len(dec_outputs)

    source_words = source.split()
    for i in range(len(dec_outputs)):
      if dec_outputs[i] < 0:  # it's from copier
        position = -1 - dec_outputs[i]
        if position < len(source_words):
          output[i] = source_words[position]
        else:
          output[i] = '<out_of_bound>'
      elif dec_outputs[i] >= 0:  # it's from generator or unk (if 0)
        output[i] = data.Ids2Words([dec_outputs[i]], self._output_vocab)[0]

    source = source.replace(data.SENTENCE_START + ' ', '').replace(
        ' ' + data.SENTENCE_END, '')
    targets = [
        x.replace(data.SENTENCE_START + ' ', '').replace(
            ' ' + data.SENTENCE_END, '') for x in targets
    ]
    decoded = ' '.join(output)
    end_p = decoded.find(data.SENTENCE_END, 0)
    if end_p != -1:
      decoded = decoded[:end_p].strip()

    bleu_score = metrics.get_bleu(decoded, targets)
    f1_score = metrics.get_f1(decoded, targets)
    exact_score = metrics.get_exact(decoded, targets)

    self._decode_io.Write(source, targets, decoded, bleu_score,
                          f1_score, exact_score)

    return bleu_score, f1_score, exact_score 
开发者ID:google,项目名称:text2text,代码行数:45,代码来源:decode.py


注:本文中的data.Ids2Words方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。