当前位置: 首页>>代码示例>>Python>>正文


Python data.DataLoader方法代码示例

本文整理汇总了Python中data.DataLoader方法的典型用法代码示例。如果您正苦于以下问题:Python data.DataLoader方法的具体用法?Python data.DataLoader怎么用?Python data.DataLoader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在data的用法示例。


在下文中一共展示了data.DataLoader方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_test

# 需要导入模块: import data [as 别名]
# 或者: from data import DataLoader [as 别名]
def run_test(epoch=-1):
    print('Running Test')
    opt = TestOptions().parse()
    opt.serial_batches = True  # no shuffle
    dataset = DataLoader(opt)
    model = create_model(opt)
    writer = Writer(opt)
    # test
    writer.reset_counter()
    for i, data in enumerate(dataset):
        model.set_input(data)
        ncorrect, nexamples = model.test()
        writer.update_counter(ncorrect, nexamples)
    writer.print_acc(epoch, writer.acc)
    return writer.acc 
开发者ID:ranahanocka,项目名称:MeshCNN,代码行数:17,代码来源:test.py

示例2: run

# 需要导入模块: import data [as 别名]
# 或者: from data import DataLoader [as 别名]
def run(args, local_rank):
    """ Distributed Synchronous """
    torch.manual_seed(1234)
    vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
    if (args.world_size == 1 or dist.get_rank() == 0):
        print ("vocab.size = %d"%vocab.size, flush=True)
    model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim,\
                  args.num_heads, args.dropout, args.layers, args.smoothing, args.approx)
    if args.start_from is not None:
        ckpt = torch.load(args.start_from, map_location='cpu')
        model.load_state_dict(ckpt['model'])
    model = model.cuda(local_rank)
   
    if args.world_size > 1:
        torch.manual_seed(1234 + dist.get_rank())
        random.seed(5678 + dist.get_rank())
    
    optimizer = Optim(model.embed_dim, args.lr, args.warmup_steps, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.998), eps=1e-9))

    if args.start_from is not None:
        optimizer.load_state_dict(ckpt['optimizer'])

    #train_data = DataLoader(vocab, args.train_data+"0"+str(local_rank), args.batch_size, args.max_len, args.min_len)
    train_data = DataLoader(vocab, args.train_data, args.batch_size, args.max_len, args.min_len)
    batch_acm = 0
    acc_acm, nll_acm, ppl_acm, ntokens_acm, nxs, npairs_acm, loss_acm = 0., 0., 0., 0., 0., 0., 0.
    while True:
        model.train()
        for truth, inp, msk in train_data:
            batch_acm += 1
            truth = truth.cuda(local_rank)
            inp = inp.cuda(local_rank)
            msk = msk.cuda(local_rank)

            model.zero_grad()
            res, loss, acc, nll, ppl, ntokens, npairs = model(truth, inp, msk)
            loss_acm += loss.item()
            acc_acm += acc
            nll_acm += nll
            ppl_acm += ppl
            ntokens_acm += ntokens
            npairs_acm += npairs
            nxs += npairs
            
            loss.backward()
            if args.world_size > 1:
                average_gradients(model)
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.print_every == -1%args.print_every:
                print ('batch_acm %d, loss %.3f, acc %.3f, nll %.3f, ppl %.3f, x_acm %d, lr %.6f'\
                        %(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, \
                        nll_acm/nxs, ppl_acm/nxs, npairs_acm, optimizer._rate), flush=True)
                acc_acm, nll_acm, ppl_acm, ntokens_acm, loss_acm, nxs = 0., 0., 0., 0., 0., 0.
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.save_every == -1%args.save_every:
                if not os.path.exists(args.save_dir):
                    os.mkdir(args.save_dir)
                torch.save({'args':args, 'model':model.state_dict(), 'optimizer':optimizer.state_dict()}, '%s/epoch%d_batch_%d'%(args.save_dir, train_data.epoch_id, batch_acm)) 
开发者ID:lipiji,项目名称:Guyu,代码行数:61,代码来源:train.py


注:本文中的data.DataLoader方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。