当前位置: 首页>>代码示例>>Python>>正文


Python data.BaseTransform方法代码示例

本文整理汇总了Python中data.BaseTransform方法的典型用法代码示例。如果您正苦于以下问题:Python data.BaseTransform方法的具体用法?Python data.BaseTransform怎么用?Python data.BaseTransform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在data的用法示例。


在下文中一共展示了data.BaseTransform方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import data [as 别名]
# 或者: from data import BaseTransform [as 别名]
def main():
    global args
    args = arg_parse()
    cfg_from_file(args.cfg_file)
    bgr_means = cfg.TRAIN.BGR_MEAN
    dataset_name = cfg.DATASETS.DATA_TYPE
    batch_size = cfg.TEST.BATCH_SIZE
    num_workers = args.num_workers
    if cfg.DATASETS.DATA_TYPE == 'VOC':
        trainvalDataset = VOCDetection
        classes = VOC_CLASSES
        top_k = 200
    else:
        trainvalDataset = COCODetection
        classes = COCO_CLASSES
        top_k = 300
    valSet = cfg.DATASETS.VAL_TYPE
    num_classes = cfg.MODEL.NUM_CLASSES
    save_folder = args.save_folder
    if not os.path.exists(save_folder):
        os.mkdir(save_folder)
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    cfg.TRAIN.TRAIN_ON = False
    net = SSD(cfg)

    checkpoint = torch.load(args.weights)
    state_dict = checkpoint['model']
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        head = k[:7]
        if head == 'module.':
            name = k[7:]  # remove `module.`
        else:
            name = k
        new_state_dict[name] = v
    net.load_state_dict(new_state_dict)

    detector = Detect(cfg)
    img_wh = cfg.TEST.INPUT_WH
    ValTransform = BaseTransform(img_wh, bgr_means, (2, 0, 1))
    input_folder = args.images
    thresh = cfg.TEST.CONFIDENCE_THRESH
    for item in os.listdir(input_folder):
        img_path = os.path.join(input_folder, item)
        print(img_path)
        img = cv2.imread(img_path)
        dets = im_detect(img, net, detector, ValTransform, thresh)
        draw_img = draw_rects(img, dets, classes)
        out_img_name = "output_" + item[:-4] + '_hsd'+item[-4:]
        save_path = os.path.join(save_folder, out_img_name)
        cv2.imwrite(save_path, img) 
开发者ID:JialeCao001,项目名称:HSD,代码行数:54,代码来源:demo.py

示例2: main

# 需要导入模块: import data [as 别名]
# 或者: from data import BaseTransform [as 别名]
def main():
    global args
    args = arg_parse()
    cfg_from_file(args.cfg_file)
    bgr_means = cfg.TRAIN.BGR_MEAN
    dataset_name = cfg.DATASETS.DATA_TYPE
    batch_size = cfg.TEST.BATCH_SIZE
    num_workers = args.num_workers
    if cfg.DATASETS.DATA_TYPE == 'VOC':
        trainvalDataset = VOCDetection
        top_k = 200
    else:
        trainvalDataset = COCODetection
        top_k = 300
    dataroot = cfg.DATASETS.DATAROOT
    if cfg.MODEL.SIZE == '300':
        size_cfg = cfg.SMALL
    else:
        size_cfg = cfg.BIG
    valSet = cfg.DATASETS.VAL_TYPE
    num_classes = cfg.MODEL.NUM_CLASSES
    save_folder = args.save_folder
    if not os.path.exists(save_folder):
        os.mkdir(save_folder)
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    cfg.TRAIN.TRAIN_ON = False
    net = SSD(cfg)

    checkpoint = torch.load(args.weights)
    state_dict = checkpoint['model']
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        head = k[:7]
        if head == 'module.':
            name = k[7:]  # remove `module.`
        else:
            name = k
        new_state_dict[name] = v
    net.load_state_dict(new_state_dict)
    detector = Detect(cfg)
    ValTransform = BaseTransform(size_cfg.IMG_WH, bgr_means, (2, 0, 1))
    val_dataset = trainvalDataset(dataroot, valSet, ValTransform, "val")
    val_loader = data.DataLoader(
        val_dataset,
        batch_size,
        shuffle=False,
        num_workers=num_workers,
        collate_fn=detection_collate)
    top_k = 300
    thresh = cfg.TEST.CONFIDENCE_THRESH
    eval_net(
        val_dataset,
        val_loader,
        net,
        detector,
        cfg,
        ValTransform,
        top_k,
        thresh=thresh,
        batch_size=batch_size) 
开发者ID:JialeCao001,项目名称:HSD,代码行数:63,代码来源:eval.py

示例3: main

# 需要导入模块: import data [as 别名]
# 或者: from data import BaseTransform [as 别名]
def main():
    global args
    args = arg_parse()
    cfg_from_file(args.cfg_file)
    bgr_means = cfg.TRAIN.BGR_MEAN
    dataset_name = cfg.DATASETS.DATA_TYPE
    batch_size = cfg.TEST.BATCH_SIZE
    num_workers = args.num_workers
    if cfg.DATASETS.DATA_TYPE == 'VOC':
        trainvalDataset = VOCDetection
        classes = VOC_CLASSES
        top_k = 200
    else:
        trainvalDataset = COCODetection
        classes = COCO_CLASSES
        top_k = 300
    valSet = cfg.DATASETS.VAL_TYPE
    num_classes = cfg.MODEL.NUM_CLASSES
    save_folder = args.save_folder
    if not os.path.exists(save_folder):
        os.mkdir(save_folder)
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    cfg.TRAIN.TRAIN_ON = False
    net = SSD(cfg)

    checkpoint = torch.load(args.weights)
    state_dict = checkpoint['model']
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        head = k[:7]
        if head == 'module.':
            name = k[7:]  # remove `module.`
        else:
            name = k
        new_state_dict[name] = v
    net.load_state_dict(new_state_dict)

    detector = Detect(cfg)
    img_wh = cfg.TEST.INPUT_WH
    ValTransform = BaseTransform(img_wh, bgr_means, (2, 0, 1))
    input_folder = args.images
    thresh = cfg.TEST.CONFIDENCE_THRESH
    for item in os.listdir(input_folder)[2:3]:
        img_path = os.path.join(input_folder, item)
        print(img_path)
        img = cv2.imread(img_path)
        dets = im_detect(img, net, detector, ValTransform, thresh)
        draw_img = draw_rects(img, dets, classes)
        out_img_name = "output_" + item
        save_path = os.path.join(save_folder, out_img_name)
        cv2.imwrite(save_path, img) 
开发者ID:yqyao,项目名称:SSD_Pytorch,代码行数:54,代码来源:demo.py


注:本文中的data.BaseTransform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。