本文整理汇总了Python中dask.delayed方法的典型用法代码示例。如果您正苦于以下问题:Python dask.delayed方法的具体用法?Python dask.delayed怎么用?Python dask.delayed使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dask
的用法示例。
在下文中一共展示了dask.delayed方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dispatch
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def dispatch(function, delayed=False, client=None):
"""
Decide how to wrap a function for Dask depending on the options given.
Parameters
----------
function : callable
The function that will be called.
delayed : bool
If True, will wrap the function in :func:`dask.delayed`.
client : None or dask.distributed Client
If *delayed* is False and *client* is not None, will return a partial
execution of the ``client.submit`` with the function as first argument.
Returns
-------
function : callable
The function wrapped in Dask.
"""
if delayed:
return dask.delayed(function)
if client is not None:
return functools.partial(client.submit, function)
return function
示例2: detect_outliers
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def detect_outliers(request):
"""
Detect outliers end point
"""
dataset_id = int(request.GET.get("dataset_id"))
if dataset_id is None:
return JsonResponse({"status": "failure", "message": "Dataset id is not provided"})
dataset = Dataset.objects.get(pk=dataset_id)
file_path = dataset.path
delete_features = json.loads(dataset.deleted_features)
# Create a detection experiment and start outlier detection
process = Process.objects.get(name='Detection')
process_status = ProcessStatus.objects.get(name='Running')
experiment = Experiment(dataset=dataset, process=process, process_status=process_status)
experiment.save()
results = delayed(detect_all)(os.path.join(settings.MEDIA_ROOT, file_path), experiment.id, settings.RESULTS_ROOT,
delete_features)
dask.compute(results)
return JsonResponse(
{'status': 'success', 'message': 'Detection started successfully', 'experiment_id': experiment.id})
示例3: _load
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def _load(self, files_in, files_out, urlpath, meta=True):
"""Download a set of files"""
import dask
out = []
outnames = []
for file_in, file_out in zip(files_in, files_out):
cache_path = file_out.path
outnames.append(cache_path)
# If `_munge_path` did not find a match we want to avoid
# writing to the urlpath.
if cache_path == urlpath:
continue
if not os.path.isfile(cache_path):
logger.debug("Caching file: {}".format(file_in.path))
logger.debug("Original path: {}".format(urlpath))
logger.debug("Cached at: {}".format(cache_path))
if meta:
self._log_metadata(urlpath, file_in.path, cache_path)
ddown = dask.delayed(_download)
out.append(ddown(file_in, file_out, self.blocksize,
self.output))
dask.compute(*out)
return outnames
示例4: delayed_dask_stack
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def delayed_dask_stack():
"""A 4D (20, 10, 10, 10) delayed dask array, simulates disk io."""
# we will return a dict with a 'calls' variable that tracks call count
output = {'calls': 0}
# create a delayed version of function that simply generates np.arrays
# but also counts when it has been called
@dask.delayed
def get_array():
nonlocal output
output['calls'] += 1
return np.random.rand(10, 10, 10)
# then make a mock "timelapse" of 3D stacks
# see https://napari.org/tutorials/applications/dask.html for details
_list = [get_array() for fn in range(20)]
output['stack'] = da.stack(
[da.from_delayed(i, shape=(10, 10, 10), dtype=np.float) for i in _list]
)
assert output['stack'].shape == (20, 10, 10, 10)
return output
示例5: _update_dataset
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def _update_dataset(partitions, *args, **kwargs):
# TODO: fix the parsing below to adapt for all supported formats (see: parse_input_to_metapartition)
if any(partitions):
table_name = next(iter(dict(partitions[0]["data"]).keys()))
delayed_partitions = [
dask.delayed(_unwrap_partition)(part) for part in partitions
]
partitions = dd.from_delayed(delayed_partitions)
else:
table_name = "core"
partitions = None
ddf = update_dataset_from_ddf(partitions, *args, table=table_name, **kwargs)
s = pickle.dumps(ddf, pickle.HIGHEST_PROTOCOL)
ddf = pickle.loads(s)
return ddf.compute()
示例6: calculate_centroids_old
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def calculate_centroids_old(cnmds, window, grp_dim=['animal', 'session']):
print("computing centroids")
cnt_list = []
for anm, cur_anm in cnmds.groupby('animal'):
for ss, cur_ss in cur_anm.groupby('session'):
# cnt = centroids(cur_ss['A_shifted'], window.sel(animal=anm))
cnt = da.delayed(centroids)(
cur_ss['A_shifted'], window.sel(animal=anm))
cnt_list.append(cnt)
with ProgressBar():
cnt_list, = da.compute(cnt_list)
cnts_ds = pd.concat(cnt_list, ignore_index=True)
cnts_ds.height = cnts_ds.height.astype(float)
cnts_ds.width = cnts_ds.width.astype(float)
cnts_ds.unit_id = cnts_ds.unit_id.astype(int)
cnts_ds.animal = cnts_ds.animal.astype(str)
cnts_ds.session = cnts_ds.session.astype(str)
cnts_ds.session_id = cnts_ds.session_id.astype(str)
return cnts_ds
示例7: calculate_centroid_distance_old
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def calculate_centroid_distance_old(cents,
A,
window,
grp_dim=['animal'],
tile=(50, 50),
shift=True,
hamming=True,
corr=False):
dist_list = []
A = da.delayed(A)
for cur_anm, cur_grp in cents.groupby('animal'):
print("processing animal: {}".format(cur_anm))
cur_A = A.sel(animal=cur_anm)
cur_wnd = window.sel(animal=cur_anm)
dist = centroids_distance(cur_grp, cur_A, cur_wnd, shift, hamming,
corr, tile)
dist['meta', 'animal'] = cur_anm
dist_list.append(dist)
dist = pd.concat(dist_list, ignore_index=True)
return dist
示例8: centroids_distance_old
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def centroids_distance_old(cents,
A,
window,
shift,
hamming,
corr,
tile=(50, 50)):
sessions = cents['session'].unique()
dim_h = (np.min(cents['height']), np.max(cents['height']))
dim_w = (np.min(cents['width']), np.max(cents['width']))
dist_list = []
for ssA, ssB in itt.combinations(sessions, 2):
# dist = _calc_cent_dist(ssA, ssB, cents, cnmds, window, tile, dim_h, dim_w)
dist = da.delayed(_calc_cent_dist)(ssA, ssB, cents, A, window,
tile, dim_h, dim_w, shift, hamming,
corr)
dist_list.append(dist)
with ProgressBar():
dist_list, = da.compute(dist_list)
dists = pd.concat(dist_list, ignore_index=True)
return dists
示例9: _labeled_comprehension_delayed
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def _labeled_comprehension_delayed(func,
out_dtype,
default,
a,
positions=None):
"""
Wrapped delayed labeled comprehension function
Included in the module for pickling purposes. Also handle cases where
computation should not occur.
"""
result = numpy.empty((1,), dtype=out_dtype)
if a.size:
if positions is None:
result[0] = func(a)
else:
result[0] = func(a, positions)
else:
result[0] = default[0]
return result
示例10: _labeled_comprehension_func
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def _labeled_comprehension_func(func,
out_dtype,
default,
a,
positions=None):
"""
Wrapped labeled comprehension function
Ensures the result is a proper Dask Array and the computation delayed.
"""
return dask.array.from_delayed(
_labeled_comprehension_delayed(func, out_dtype, default, a, positions),
(1,),
out_dtype
)
示例11: __call__
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def __call__(self, datasets, **info):
"""Create the composite by scaling the DNB data using a histogram equalization method.
:param datasets: 2-element tuple (Day/Night Band data, Solar Zenith Angle data)
:param **info: Miscellaneous metadata for the newly produced composite
"""
if len(datasets) != 2:
raise ValueError("Expected 2 datasets, got %d" % (len(datasets), ))
dnb_data = datasets[0]
sza_data = datasets[1]
delayed = dask.delayed(self._run_dnb_normalization)(dnb_data.data, sza_data.data)
output_dataset = dnb_data.copy()
output_data = da.from_delayed(delayed, dnb_data.shape, dnb_data.dtype)
output_dataset.data = output_data.rechunk(dnb_data.data.chunks)
info = dnb_data.attrs.copy()
info.update(self.attrs)
info["standard_name"] = "equalized_radiance"
info["mode"] = "L"
output_dataset.attrs = info
return output_dataset
示例12: three_d_effect
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def three_d_effect(img, **kwargs):
"""Create 3D effect using convolution."""
w = kwargs.get('weight', 1)
LOG.debug("Applying 3D effect with weight %.2f", w)
kernel = np.array([[-w, 0, w],
[-w, 1, w],
[-w, 0, w]])
mode = kwargs.get('convolve_mode', 'same')
def func(band_data, kernel=kernel, mode=mode, index=None):
del index
delay = dask.delayed(_three_d_effect_delayed)(band_data, kernel, mode)
new_data = da.from_delayed(delay, shape=band_data.shape, dtype=band_data.dtype)
return new_data
return apply_enhancement(img.data, func, separate=True, pass_dask=True)
示例13: _call_ll2cr
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def _call_ll2cr(self, lons, lats, target_geo_def, swath_usage=0):
"""Wrap ll2cr() for handling dask delayed calls better."""
new_src = SwathDefinition(lons, lats)
swath_points_in_grid, cols, rows = ll2cr(new_src, target_geo_def)
# FIXME: How do we check swath usage/coverage if we only do this
# per-block
# # Determine if enough of the input swath was used
# grid_name = getattr(self.target_geo_def, "name", "N/A")
# fraction_in = swath_points_in_grid / float(lons.size)
# swath_used = fraction_in > swath_usage
# if not swath_used:
# LOG.info("Data does not fit in grid %s because it only %f%% of "
# "the swath is used" %
# (grid_name, fraction_in * 100))
# raise RuntimeError("Data does not fit in grid %s" % (grid_name,))
# else:
# LOG.debug("Data fits in grid %s and uses %f%% of the swath",
# grid_name, fraction_in * 100)
return np.stack([cols, rows], axis=0)
示例14: _call_fornav
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def _call_fornav(self, cols, rows, target_geo_def, data,
grid_coverage=0, **kwargs):
"""Wrap fornav() to run as a dask delayed."""
num_valid_points, res = fornav(cols, rows, target_geo_def,
data, **kwargs)
if isinstance(data, tuple):
# convert 'res' from tuple of arrays to one array
res = np.stack(res)
num_valid_points = sum(num_valid_points)
grid_covered_ratio = num_valid_points / float(res.size)
grid_covered = grid_covered_ratio > grid_coverage
if not grid_covered:
msg = "EWA resampling only found %f%% of the grid covered " \
"(need %f%%)" % (grid_covered_ratio * 100,
grid_coverage * 100)
raise RuntimeError(msg)
LOG.debug("EWA resampling found %f%% of the grid covered" %
(grid_covered_ratio * 100))
return res
示例15: benchmark
# 需要导入模块: import dask [as 别名]
# 或者: from dask import delayed [as 别名]
def benchmark(datasets=None, datasets_path=None, distributed=True, timeout=None):
if datasets is None:
if datasets_path is None:
datasets = get_available_demos().name
else:
datasets = os.listdir(datasets_path)
if distributed:
import dask
global score_dataset
score_dataset = dask.delayed(score_dataset)
scores = list()
for dataset in datasets:
scores.append(score_dataset(dataset, datasets_path, timeout))
if distributed:
scores = dask.compute(*scores)
return pd.DataFrame(scores)