本文整理汇总了Python中dask.__version__方法的典型用法代码示例。如果您正苦于以下问题:Python dask.__version__方法的具体用法?Python dask.__version__怎么用?Python dask.__version__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dask
的用法示例。
在下文中一共展示了dask.__version__方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _submit_calcs_on_client
# 需要导入模块: import dask [as 别名]
# 或者: from dask import __version__ [as 别名]
def _submit_calcs_on_client(calcs, client, func):
"""Submit calculations via dask.bag and a distributed client"""
logging.info('Connected to client: {}'.format(client))
if LooseVersion(dask.__version__) < '0.18':
dask_option_setter = dask.set_options
else:
dask_option_setter = dask.config.set
with dask_option_setter(get=client.get):
return db.from_sequence(calcs).map(func).compute()
示例2: test_dask_array_creates_cache
# 需要导入模块: import dask [as 别名]
# 或者: from dask import __version__ [as 别名]
def test_dask_array_creates_cache():
"""Test that adding a dask array creates a dask cache and turns of fusion.
"""
# by default we have no dask_cache and task fusion is active
original = dask.config.get("optimization.fuse.active", None)
def mock_set_view_slice():
assert dask.config.get("optimization.fuse.active") is False
layer = layers.Image(da.ones((100, 100)))
layer._set_view_slice = mock_set_view_slice
layer.set_view_slice()
# adding a dask array will turn on the cache, and turn off task fusion.
assert isinstance(utils.dask_cache, dask.cache.Cache)
assert dask.config.get("optimization.fuse.active", None) == original
# if the dask version is too low to remove task fusion, emit a warning
_dask_ver = dask.__version__
dask.__version__ = '2.14.0'
with pytest.warns(UserWarning) as record:
_ = layers.Image(da.ones((100, 100)))
assert 'upgrade Dask to v2.15.0 or later' in record[0].message.args[0]
dask.__version__ = _dask_ver
# make sure we can resize the cache
assert utils.dask_cache.cache.total_bytes > 1000
utils.resize_dask_cache(1000)
assert utils.dask_cache.cache.total_bytes <= 1000
# This should only affect dask arrays, and not numpy data
def mock_set_view_slice2():
assert dask.config.get("optimization.fuse.active", None) == original
layer2 = layers.Image(np.ones((100, 100)))
layer2._set_view_slice = mock_set_view_slice2
layer2.set_view_slice()
# clean up cache
utils.dask_cache = None
示例3: task_execution_time
# 需要导入模块: import dask [as 别名]
# 或者: from dask import __version__ [as 别名]
def task_execution_time(self, builderSelf):
## calculates execution time of each task in client using get task stream
task_Info_latest = builderSelf.client.get_task_stream()[-1]
time_tuple = task_Info_latest['startstops'][0]
if version.parse(dask.__version__) < version.parse("2.10.0"):
computing_time = time_tuple[2] - time_tuple[1]
else:
computing_time = time_tuple['stop'] - time_tuple['start']
return computing_time
示例4: resolve_name
# 需要导入模块: import dask [as 别名]
# 或者: from dask import __version__ [as 别名]
def resolve_name(self, modname, parents, path, base):
if modname is None:
if path:
mod_cls = path.rstrip(".")
else:
mod_cls = None
# if documenting a class-level object without path,
# there must be a current class, either from a parent
# auto directive ...
mod_cls = self.env.temp_data.get("autodoc:class")
# ... or from a class directive
if mod_cls is None:
mod_cls = self.env.temp_data.get("py:class")
# ... if still None, there's no way to know
if mod_cls is None:
return None, []
# HACK: this is added in comparison to ClassLevelDocumenter
# mod_cls still exists of class.accessor, so an extra
# rpartition is needed
modname, accessor = rpartition(mod_cls, ".")
modname, cls = rpartition(modname, ".")
parents = [cls, accessor]
# if the module name is still missing, get it like above
if not modname:
modname = self.env.temp_data.get("autodoc:module")
if not modname:
if sphinx.__version__ > "1.3":
modname = self.env.ref_context.get("py:module")
else:
modname = self.env.temp_data.get("py:module")
# ... else, it stays None, which means invalid
return modname, parents + [base]
示例5: get_execution_engine
# 需要导入模块: import dask [as 别名]
# 或者: from dask import __version__ [as 别名]
def get_execution_engine():
# In the future, when there are multiple engines and different ways of
# backing the DataFrame, there will have to be some changed logic here to
# decide these things. In the meantime, we will use the currently supported
# execution engine + backing (Pandas + Ray).
if "MODIN_ENGINE" in os.environ:
# .title allows variants like ray, RAY, Ray
return os.environ["MODIN_ENGINE"].title()
else:
if "MODIN_DEBUG" in os.environ:
return "Python"
else:
if sys.platform != "win32":
try:
import ray
except ImportError:
pass
else:
if version.parse(ray.__version__) != version.parse("0.8.6"):
raise ImportError(
"Please `pip install modin[ray]` to install compatible Ray version."
)
return "Ray"
try:
import dask
import distributed
except ImportError:
raise ImportError(
"Please `pip install {}modin[dask]` to install an engine".format(
"modin[ray]` or `" if sys.platform != "win32" else ""
)
)
else:
if version.parse(dask.__version__) < version.parse(
"2.1.0"
) or version.parse(distributed.__version__) < version.parse("2.3.2"):
raise ImportError(
"Please `pip install modin[dask]` to install compatible Dask version."
)
return "Dask"
示例6: make_cluster_model
# 需要导入模块: import dask [as 别名]
# 或者: from dask import __version__ [as 别名]
def make_cluster_model(
cluster_id: str,
cluster_name: str,
cluster: Cluster,
adaptive: Union[Adaptive, None],
) -> ClusterModel:
"""
Make a cluster model. This is a JSON-serializable representation
of the information about a cluster that can be sent over the wire.
Parameters
----------
cluster_id: string
A unique string for the cluster.
cluster_name: string
A display name for the cluster.
cluster: Cluster
The cluster out of which to make the cluster model.
adaptive: Adaptive
The adaptive controller for the number of workers for the cluster, or
none if the cluster is not scaled adaptively.
"""
# This would be a great target for a dataclass
# once python 3.7 is in wider use.
try:
info = cluster.scheduler_info
except AttributeError:
info = cluster.scheduler.identity()
try:
cores = sum(d["nthreads"] for d in info["workers"].values())
except KeyError: # dask.__version__ < 2.0
cores = sum(d["ncores"] for d in info["workers"].values())
assert isinstance(info, dict)
model = dict(
id=cluster_id,
name=cluster_name,
scheduler_address=cluster.scheduler_address,
dashboard_link=cluster.dashboard_link or "",
workers=len(info["workers"]),
memory=utils.format_bytes(
sum(d["memory_limit"] for d in info["workers"].values())
),
cores=cores,
)
if adaptive:
model["adapt"] = {"minimum": adaptive.minimum, "maximum": adaptive.maximum}
return model
# Create a default cluster manager
# to keep track of clusters.