本文整理汇总了Python中darknet.Darknet方法的典型用法代码示例。如果您正苦于以下问题:Python darknet.Darknet方法的具体用法?Python darknet.Darknet怎么用?Python darknet.Darknet使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类darknet
的用法示例。
在下文中一共展示了darknet.Darknet方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_model
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def load_model():
CUDA = torch.cuda.is_available()
classes = load_classes('data/coco.names')
#Set up the neural network
print("Loading network.....")
model = Darknet(args.cfgfile)
model.load_weights(args.weightsfile)
print("Network successfully loaded")
model.net_info["height"] = args.reso
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
#If there's a GPU availible, put the model on GPU
if CUDA:
model.cuda()
#Set the model in evaluation mode
model.eval()
return model
示例2: __init__
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def __init__(self, cfgfile, weightsfile):
self.CONFIDENCE_THRESHOLD = 0.85
self.NMS_THRESHOLD = 0.4
self.NUM_CLASSES = 2 # hard code here for head detector
self.CLASSES = [ 'Head' ]
self.CUDA = torch.cuda.is_available()
if self.CUDA:
logging.info('Using CUDA.')
else:
logging.info('Using CPU.')
logging.info("Loading network.....")
self.model = Darknet(cfgfile)
self.model.load_weights(weightsfile)
self.model.net_info["height"] = 512 # hard code here because we didn't use Spp
self.inp_dim = int(self.model.net_info["height"])
if self.CUDA:
self.model.cuda()
self.model.eval()
logging.info("Network successfully loaded.")
# Detect the heads in the given image (opencv numpy array), and return the results
示例3: main
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def main():
args = parse_args()
if args.cuda and not torch.cuda.is_available():
print("ERROR: cuda is not available, try running on CPU")
sys.exit(1)
print('Loading network...')
model = Darknet("cfg/yolov3.cfg")
model.load_weights('yolov3.weights')
if args.cuda:
model.cuda()
model.eval()
print('Network loaded')
if args.video:
detect_video(model, args)
else:
detect_image(model, args)
示例4: load_model
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def load_model():
start = 0
classes = load_classes(yolo_dir + '/data/coco.names')
#Set up the neural network
print("Loading YOLO network.....")
model = Darknet(args.cfgfile)
model.load_weights(args.weightsfile)
print("Network successfully loaded")
model.net_info["height"] = args.reso
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
if CUDA:
model.cuda()
model.eval()
return model
示例5: detect
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def detect(cfgfile, weightfile, imgfile):
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
# if m.num_classes == 20:
# namesfile = 'data/voc.names'
# elif m.num_classes == 80:
# namesfile = 'data/coco.names'
# else:
# namesfile = 'data/names'
use_cuda = torch.cuda.is_available()
if use_cuda:
m.cuda()
img = Image.open(imgfile).convert('RGB')
sized = letterbox_image(img, m.width, m.height)
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
correct_yolo_boxes(boxes, img.width, img.height, m.width, m.height)
finish = time.time()
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes(img, boxes, 'predictions.jpg', class_names)
示例6: detect_cv2
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def detect_cv2(cfgfile, weightfile, imgfile):
import cv2
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = True
if use_cuda:
m.cuda()
img = cv2.imread(imgfile)
sized = cv2.resize(img, (m.width, m.height))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names)
示例7: detect_skimage
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def detect_skimage(cfgfile, weightfile, imgfile):
from skimage import io
from skimage.transform import resize
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
use_cuda = True
if use_cuda:
m.cuda()
img = io.imread(imgfile)
sized = resize(img, (m.width, m.height)) * 255
for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
plot_boxes_cv2(img, boxes, savename='predictions.jpg', class_names=class_names)
示例8: demo
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def demo(cfgfile, weightfile):
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
if m.num_classes == 20:
namesfile = 'data/voc.names'
elif m.num_classes == 80:
namesfile = 'data/coco.names'
else:
namesfile = 'data/names'
print("{} is used for classification".format(namesfile))
class_names = load_class_names(namesfile)
use_cuda = True
if use_cuda:
m.cuda()
cap = cv2.VideoCapture(1)
if not cap.isOpened():
print("Unable to open camera")
exit(-1)
while True:
res, img = cap.read()
if res:
sized = cv2.resize(img, (m.width, m.height))
bboxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
print('------')
draw_img = plot_boxes_cv2(img, bboxes, None, class_names)
cv2.imshow(cfgfile, draw_img)
cv2.waitKey(1)
else:
print("Unable to read image")
exit(-1)
############################################
示例9: partial
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def partial(cfgfile, weightfile, outfile, cutoff):
m = Darknet(cfgfile)
m.print_network()
m.load_weights(weightfile)
m.seen = 0
m.save_weights(outfile, cutoff)
print('save %s' % (outfile))
示例10: eval_widerface
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def eval_widerface(cfgfile, weightfile, valdir, savedir):
m = Darknet(cfgfile)
m.load_weights(weightfile)
use_cuda = 1
if use_cuda:
m.cuda()
scale_size = 16
class_names = load_class_names('data/names')
for parent,dirnames,filenames in os.walk(valdir):
if parent != valdir:
targetdir = os.path.join(savedir, os.path.basename(parent))
if not os.path.isdir(targetdir):
os.mkdir(targetdir)
for filename in filenames:
imgfile = os.path.join(parent,filename)
img = Image.open(imgfile).convert('RGB')
sized_width = int(round(img.width*1.0/scale_size) * 16)
sized_height = int(round(img.height*1.0/scale_size) * 16)
sized = img.resize((sized_width, sized_height))
print(filename, img.width, img.height, sized_width, sized_height)
if sized_width * sized_height > 1024 * 2560:
print('omit %s' % filename)
continue
boxes = do_detect(m, sized, 0.05, 0.4, use_cuda)
if True:
savename = os.path.join(targetdir, filename)
print('save to %s' % savename)
plot_boxes(img, boxes, savename, class_names)
if True:
savename = os.path.join(targetdir, os.path.splitext(filename)[0]+".txt")
print('save to %s' % savename)
save_boxes(img, boxes, savename)
示例11: detect
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def detect(cfgfile, weightfile, imgfolder):
m = Darknet(cfgfile)
#m.print_network()
m.load_weights(weightfile)
print('Loading weights from %s... Done!' % (weightfile))
# if m.num_classes == 20:
# namesfile = 'data/voc.names'
# elif m.num_classes == 80:
# namesfile = 'data/coco.names'
# else:
# namesfile = 'data/names'
use_cuda = True
if use_cuda:
m.cuda()
imgfiles = [x for x in os.listdir(imgfolder) if x[-4:] == '.jpg']
imgfiles.sort()
for imgname in imgfiles:
imgfile = os.path.join(imgfolder,imgname)
img = Image.open(imgfile).convert('RGB')
sized = img.resize((m.width, m.height))
#for i in range(2):
start = time.time()
boxes = do_detect(m, sized, 0.5, 0.4, use_cuda)
finish = time.time()
#if i == 1:
print('%s: Predicted in %f seconds.' % (imgfile, (finish-start)))
class_names = load_class_names(namesfile)
img = plot_boxes(img, boxes, 'result/{}'.format(os.path.basename(imgfile)), class_names)
img = np.array(img)
cv2.imshow('{}'.format(os.path.basename(imgfolder)), img)
cv2.resizeWindow('{}'.format(os.path.basename(imgfolder)), 1000,800)
cv2.waitKey(1000)
示例12: __init__
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def __init__(self, data_options):
super(SegPoseNet, self).__init__()
pose_arch_cfg = data_options['pose_arch_cfg']
self.width = int(data_options['width'])
self.height = int(data_options['height'])
self.channels = int(data_options['channels'])
self.coreModel = Darknet(pose_arch_cfg, self.width, self.height, self.channels)
self.segLayer = PoseSegLayer(data_options)
self.regLayer = Pose2DLayer(data_options)
示例13: load_model
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def load_model():
scales = args.scales
batch_size = int(args.bs)
confidence = float(args.confidence)
nms_thesh = float(args.nms_thresh)
start = 0
CUDA = torch.cuda.is_available()
classes = load_classes(yolo_dir + '/data/coco.names')
#Set up the neural network
print("Loading YOLO network.....")
model = Darknet(args.cfgfile)
model.load_weights(args.weightsfile)
print("Network successfully loaded")
model.net_info["height"] = args.reso
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
#If there's a GPU availible, put the model on GPU
if CUDA:
model.cuda()
#Set the model in evaluation mode
model.eval()
return model
示例14: eval_list
# 需要导入模块: import darknet [as 别名]
# 或者: from darknet import Darknet [as 别名]
def eval_list(cfgfile, namefile, weightfile, testfile):
m = Darknet(cfgfile)
m.load_weights(weightfile)
use_cuda = 1
if use_cuda:
m.cuda()
class_names = load_class_names(namefile)
file_list = []
with open(testfile, "r") as fin:
for f in fin:
file_list.append(f.strip())
for imgfile in file_list:
img = Image.open(imgfile).convert('RGB')
sized = img.resize((m.width, m.height))
filename = os.path.basename(imgfile)
filename = os.path.splitext(filename)[0]
#print(filename, img.width, img.height, sized_width, sized_height)
if m.width * m.height > 1024 * 2560:
print('omit %s' % filename)
continue
if False:
boxes = do_detect(m, sized, conf_thresh, nms_thresh, use_cuda)
else:
m.eval()
sized = image2torch(sized).cuda();
#output = m(Variable(sized, volatile=True)).data
output = m(sized)
#boxes = get_region_boxes(output, conf_thresh, m.num_classes, m.anchors, m.num_anchors, 0, 1)[0]
boxes = get_all_boxes(output, conf_thresh, m.num_classes)[0]
boxes = np.array(nms(boxes, nms_thresh))
if False:
savename = get_det_image_name(imgfile)
print('img: save to %s' % savename)
plot_boxes(img, boxes, savename, class_names)
if False:
savename = get_det_result_name(imgfile)
print('det: save to %s' % savename)
save_boxes(imgfile, img, boxes, savename)