本文整理汇总了Python中cvxpy.Minimize方法的典型用法代码示例。如果您正苦于以下问题:Python cvxpy.Minimize方法的具体用法?Python cvxpy.Minimize怎么用?Python cvxpy.Minimize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cvxpy
的用法示例。
在下文中一共展示了cvxpy.Minimize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: sys_norm_h2_LMI
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def sys_norm_h2_LMI(Acl, Bdisturbance, C):
#doesn't work very well, if problem poorly scaled Riccati works better.
#Dullerud p 210
n = Acl.shape[0]
X = cvxpy.Semidef(n)
Y = cvxpy.Semidef(n)
constraints = [ Acl*X + X*Acl.T + Bdisturbance*Bdisturbance.T == -Y,
]
obj = cvxpy.Minimize(cvxpy.trace(Y))
prob = cvxpy.Problem(obj, constraints)
prob.solve()
eps = 1e-16
if np.max(np.linalg.eigvals((-Acl*X - X*Acl.T - Bdisturbance*Bdisturbance.T).value)) > -eps:
print('Acl*X + X*Acl.T +Bdisturbance*Bdisturbance.T is not neg def.')
return np.Inf
if np.min(np.linalg.eigvals(X.value)) < eps:
print('X is not pos def.')
return np.Inf
return np.sqrt(np.trace(C*X.value*C.T))
示例2: get_objective
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def get_objective(self, X_v, U_v, X_last_p, U_last_p):
"""
Get model specific objective to be minimized.
:param X_v: cvx variable for current states
:param U_v: cvx variable for current inputs
:param X_last_p: cvx parameter for last states
:param U_last_p: cvx parameter for last inputs
:return: A cvx objective function.
"""
slack = 0
for j in range(len(self.obstacles)):
slack += cvx.sum(self.s_prime[j])
objective = cvx.Minimize(1e5 * slack)
# objective += cvx.Minimize(cvx.sum(cvx.square(U_v)))
return objective
示例3: get_inpaint_func_tv
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def get_inpaint_func_tv():
def inpaint_func(image, mask):
"""Total variation inpainting"""
inpainted = np.zeros_like(image)
for c in range(image.shape[2]):
image_c = image[:, :, c]
mask_c = mask[:, :, c]
if np.min(mask_c) > 0:
# if mask is all ones, no need to inpaint
inpainted[:, :, c] = image_c
else:
h, w = image_c.shape
inpainted_c_var = cvxpy.Variable(h, w)
obj = cvxpy.Minimize(cvxpy.tv(inpainted_c_var))
constraints = [cvxpy.mul_elemwise(mask_c, inpainted_c_var) == cvxpy.mul_elemwise(mask_c, image_c)]
prob = cvxpy.Problem(obj, constraints)
# prob.solve(solver=cvxpy.SCS, max_iters=100, eps=1e-2) # scs solver
prob.solve() # default solver
inpainted[:, :, c] = inpainted_c_var.value
return inpainted
return inpaint_func
示例4: ball_con
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def ball_con():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('ball con')
npr.seed(0)
n = 2
A = cp.Parameter((n, n))
z = cp.Parameter(n)
p = cp.Parameter(n)
x = cp.Variable(n)
t = cp.Variable(n)
obj = cp.Minimize(0.5 * cp.sum_squares(x - p))
# TODO automate introduction of variables.
cons = [0.5 * cp.sum_squares(A * t) <= 1, t == (x - z)]
prob = cp.Problem(obj, cons)
L = npr.randn(n, n)
A.value = L.T
z.value = npr.randn(n)
p.value = npr.randn(n)
prob.solve(solver=cp.SCS)
print(x.value)
示例5: relu
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def relu():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('relu')
npr.seed(0)
n = 4
_x = cp.Parameter(n)
_y = cp.Variable(n)
obj = cp.Minimize(cp.sum_squares(_y - _x))
cons = [_y >= 0]
prob = cp.Problem(obj, cons)
_x.value = npr.randn(n)
prob.solve(solver=cp.SCS)
print(_y.value)
示例6: running_example
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def running_example():
print("running example")
m = 20
n = 10
x = cp.Variable((n, 1))
F = cp.Parameter((m, n))
g = cp.Parameter((m, 1))
lambd = cp.Parameter((1, 1), nonneg=True)
objective_fn = cp.norm(F @ x - g) + lambd * cp.norm(x)
constraints = [x >= 0]
problem = cp.Problem(cp.Minimize(objective_fn), constraints)
assert problem.is_dcp()
assert problem.is_dpp()
print("is_dpp: ", problem.is_dpp())
F_t = torch.randn(m, n, requires_grad=True)
g_t = torch.randn(m, 1, requires_grad=True)
lambd_t = torch.rand(1, 1, requires_grad=True)
layer = CvxpyLayer(problem, parameters=[F, g, lambd], variables=[x])
x_star, = layer(F_t, g_t, lambd_t)
x_star.sum().backward()
print("F_t grad: ", F_t.grad)
print("g_t grad: ", g_t.grad)
示例7: test_lml
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def test_lml(self):
tf.random.set_seed(0)
k = 2
x = cp.Parameter(4)
y = cp.Variable(4)
obj = -x * y - cp.sum(cp.entr(y)) - cp.sum(cp.entr(1. - y))
cons = [cp.sum(y) == k]
problem = cp.Problem(cp.Minimize(obj), cons)
lml = CvxpyLayer(problem, [x], [y])
x_tf = tf.Variable([1., -1., -1., -1.], dtype=tf.float64)
with tf.GradientTape() as tape:
y_opt = lml(x_tf, solver_args={'eps': 1e-10})[0]
loss = -tf.math.log(y_opt[1])
def f():
problem.solve(solver=cp.SCS, eps=1e-10)
return -np.log(y.value[1])
grad = tape.gradient(loss, [x_tf])
numgrad = numerical_grad(f, [x], [x_tf])
np.testing.assert_almost_equal(grad, numgrad, decimal=3)
示例8: test_example
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def test_example(self):
n, m = 2, 3
x = cp.Variable(n)
A = cp.Parameter((m, n))
b = cp.Parameter(m)
constraints = [x >= 0]
objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1))
problem = cp.Problem(objective, constraints)
assert problem.is_dpp()
cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x])
A_tch = torch.randn(m, n, requires_grad=True)
b_tch = torch.randn(m, requires_grad=True)
# solve the problem
solution, = cvxpylayer(A_tch, b_tch)
# compute the gradient of the sum of the solution with respect to A, b
solution.sum().backward()
示例9: fit
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def fit(self, X, y):
"""
Fit the model using X, y as training data.
:param X: array-like, shape=(n_columns, n_samples, ) training data.
:param y: array-like, shape=(n_samples, ) training data.
:return: Returns an instance of self.
"""
X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)
# Construct the problem.
betas = cp.Variable(X.shape[1])
objective = cp.Minimize(cp.sum_squares(X * betas - y))
constraints = [sum(betas) == 1]
if self.non_negative:
constraints.append(0 <= betas)
# Solve the problem.
prob = cp.Problem(objective, constraints)
prob.solve()
self.coefs_ = betas.value
return self
示例10: _mk_monotonic_average
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def _mk_monotonic_average(xs, ys, intervals, method="increasing", **kwargs):
"""
Creates smoothed averages of `ys` at the intervals given by `intervals`.
:param xs: all the datapoints of a feature (represents the x-axis)
:param ys: all the datapoints what we'd like to predict (represents the y-axis)
:param intervals: the intervals at which we'd like to get a good average value
:param method: the method that is used for smoothing, can be either `increasing` or `decreasing`.
:return:
An array as long as `intervals` that represents the average `y`-values at those intervals,
keeping the constraint in mind.
"""
x_internal = np.array([xs >= i for i in intervals]).T.astype(np.float)
betas = cp.Variable(x_internal.shape[1])
objective = cp.Minimize(cp.sum_squares(x_internal * betas - ys))
if method == "increasing":
constraints = [betas[i + 1] >= 0 for i in range(betas.shape[0] - 1)]
elif method == "decreasing":
constraints = [betas[i + 1] <= 0 for i in range(betas.shape[0] - 1)]
else:
raise ValueError(
f"method must be either `increasing` or `decreasing`, got: {method}"
)
prob = cp.Problem(objective, constraints)
prob.solve()
return betas.value.cumsum()
示例11: _generate_cvxpy_problem
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
x = cvxpy.Variable(self.n)
y = cvxpy.Variable(self.m)
t = cvxpy.Variable(self.n)
# Create parameeter and assign value
lambda_cvxpy = cvxpy.Parameter()
lambda_cvxpy.value = self.lambda_param
objective = cvxpy.Minimize(cvxpy.quad_form(y, spa.eye(self.m))
+ self.lambda_param * (np.ones(self.n) * t))
constraints = [y == self.Ad * x - self.bd,
-t <= x, x <= t]
problem = cvxpy.Problem(objective, constraints)
return problem, (x, y, t), lambda_cvxpy
示例12: _generate_cvxpy_problem
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
n = self.n
m = self.m
x = cvxpy.Variable(n)
t = cvxpy.Variable(m)
objective = cvxpy.Minimize(.5 * cvxpy.quad_form(x, spa.eye(n))
+ .5 * self.gamma * np.ones(m) * t)
constraints = [t >= spa.diags(self.b_svm).dot(self.A_svm) * x + 1,
t >= 0]
problem = cvxpy.Problem(objective, constraints)
return problem, (x, t)
示例13: _generate_cvxpy_problem
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
x = cvxpy.Variable(self.n)
y = cvxpy.Variable(self.k)
# Create parameters m
mu = cvxpy.Parameter(self.n)
mu.value = self.mu
objective = cvxpy.Minimize(cvxpy.quad_form(x, self.D) +
cvxpy.quad_form(y, spa.eye(self.k)) +
- 1 / self.gamma * (mu.T * x))
constraints = [np.ones(self.n) * x == 1,
self.F.T * x == y,
0 <= x, x <= 1]
problem = cvxpy.Problem(objective, constraints)
return problem, mu
示例14: _generate_cvxpy_problem
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def _generate_cvxpy_problem(self):
'''
Generate QP problem
'''
# Construct the problem
# minimize 1/2 z.T * z + np.ones(m).T * (r + s)
# subject to Ax - b - z = r - s
# r >= 0
# s >= 0
# The problem reformulation follows from Eq. (24) of the following paper:
# https://doi.org/10.1109/34.877518
x = cvxpy.Variable(self.n)
z = cvxpy.Variable(self.m)
r = cvxpy.Variable(self.m)
s = cvxpy.Variable(self.m)
objective = cvxpy.Minimize(.5 * cvxpy.sum_squares(z) + cvxpy.sum(r + s))
constraints = [self.Ad@x - self.bd - z == r - s,
r >= 0, s >= 0]
problem = cvxpy.Problem(objective, constraints)
return problem, (x, z, r, s)
示例15: _check_for_sdp_solver
# 需要导入模块: import cvxpy [as 别名]
# 或者: from cvxpy import Minimize [as 别名]
def _check_for_sdp_solver(cls):
"""Check if CVXPY solver is available"""
if cls._HAS_SDP_SOLVER is None:
if _HAS_CVX:
# pylint:disable=import-error
import cvxpy
solvers = cvxpy.installed_solvers()
if 'CVXOPT' in solvers:
cls._HAS_SDP_SOLVER = True
return
if 'SCS' in solvers:
# Try example problem to see if built with BLAS
# SCS solver cannot solver larger than 2x2 matrix
# problems without BLAS
try:
var = cvxpy.Variable((4, 4), PSD=True)
obj = cvxpy.Minimize(cvxpy.norm(var))
cvxpy.Problem(obj).solve(solver='SCS')
cls._HAS_SDP_SOLVER = True
return
except cvxpy.error.SolverError:
pass
cls._HAS_SDP_SOLVER = False