本文整理汇总了Python中cvxopt.solvers.qp方法的典型用法代码示例。如果您正苦于以下问题:Python solvers.qp方法的具体用法?Python solvers.qp怎么用?Python solvers.qp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cvxopt.solvers
的用法示例。
在下文中一共展示了solvers.qp方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fit
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def fit(self, Xs, Xt):
'''
Fit source and target using KMM (compute the coefficients)
:param Xs: ns * dim
:param Xt: nt * dim
:return: Coefficients (Pt / Ps) value vector (Beta in the paper)
'''
ns = Xs.shape[0]
nt = Xt.shape[0]
if self.eps == None:
self.eps = self.B / np.sqrt(ns)
K = kernel(self.kernel_type, Xs, None, self.gamma)
kappa = np.sum(kernel(self.kernel_type, Xs, Xt, self.gamma) * float(ns) / float(nt), axis=1)
K = matrix(K)
kappa = matrix(kappa)
G = matrix(np.r_[np.ones((1, ns)), -np.ones((1, ns)), np.eye(ns), -np.eye(ns)])
h = matrix(np.r_[ns * (1 + self.eps), ns * (self.eps - 1), self.B * np.ones((ns,)), np.zeros((ns,))])
sol = solvers.qp(K, -kappa, G, h)
beta = np.array(sol['x'])
return beta
示例2: radius
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def radius(K):
"""evaluate the radius of the MEB (Minimum Enclosing Ball) of examples in
feature space.
Parameters
----------
K : (n,n) ndarray,
the kernel that represents the data.
Returns
-------
r : np.float64,
the radius of the minimum enclosing ball of examples in feature space.
"""
K = validation.check_K(K).numpy()
n = K.shape[0]
P = 2 * matrix(K)
p = -matrix(K.diagonal())
G = -spdiag([1.0] * n)
h = matrix([0.0] * n)
A = matrix([1.0] * n).T
b = matrix([1.0])
solvers.options['show_progress']=False
sol = solvers.qp(P,p,G,h,A,b)
return abs(sol['primal objective'])**.5
示例3: projection_in_norm
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def projection_in_norm(self, x, M):
"""
Projection of x to simplex induced by matrix M. Uses quadratic programming.
"""
m = M.shape[0]
# Constrains matrices
P = opt.matrix(2 * M)
q = opt.matrix(-2 * M * x)
G = opt.matrix(-np.eye(m))
h = opt.matrix(np.zeros((m, 1)))
A = opt.matrix(np.ones((1, m)))
b = opt.matrix(1.)
# Solve using quadratic programming
sol = opt.solvers.qp(P, q, G, h, A, b)
return np.squeeze(sol['x'])
示例4: _QP
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def _QP(self, x, y):
# In QP formulation (dual): m variables, 2m+1 constraints (1 equation, 2m inequations)
m = len(y)
print x.shape, y.shape
P = self._kernel(x) * np.outer(y, y)
P, q = matrix(P, tc='d'), matrix(-np.ones((m, 1)), tc='d')
G = matrix(np.r_[-np.eye(m), np.eye(m)], tc='d')
h = matrix(np.r_[np.zeros((m,1)), np.zeros((m,1)) + self.C], tc='d')
A, b = matrix(y.reshape((1,-1)), tc='d'), matrix([0.0])
# print "P, q:"
# print P, q
# print "G, h"
# print G, h
# print "A, b"
# print A, b
solution = solvers.qp(P, q, G, h, A, b)
if solution['status'] == 'unknown':
print 'Not PSD!'
exit(2)
else:
self.alphas = np.array(solution['x']).squeeze()
示例5: update_h
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def update_h(self):
""" alternating least squares step, update H under the convexity
constraint """
def update_single_h(i):
""" compute single H[:,i] """
# optimize alpha using qp solver from cvxopt
FA = base.matrix(np.float64(np.dot(-self.W.T, self.data[:,i])))
al = solvers.qp(HA, FA, INQa, INQb, EQa, EQb)
self.H[:,i] = np.array(al['x']).reshape((1, self._num_bases))
EQb = base.matrix(1.0, (1,1))
# float64 required for cvxopt
HA = base.matrix(np.float64(np.dot(self.W.T, self.W)))
INQa = base.matrix(-np.eye(self._num_bases))
INQb = base.matrix(0.0, (self._num_bases,1))
EQa = base.matrix(1.0, (1, self._num_bases))
for i in range(self._num_samples):
update_single_h(i)
示例6: update_w
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def update_w(self):
""" alternating least squares step, update W under the convexity
constraint """
def update_single_w(i):
""" compute single W[:,i] """
# optimize beta using qp solver from cvxopt
FB = base.matrix(np.float64(np.dot(-self.data.T, W_hat[:,i])))
be = solvers.qp(HB, FB, INQa, INQb, EQa, EQb)
self.beta[i,:] = np.array(be['x']).reshape((1, self._num_samples))
# float64 required for cvxopt
HB = base.matrix(np.float64(np.dot(self.data[:,:].T, self.data[:,:])))
EQb = base.matrix(1.0, (1, 1))
W_hat = np.dot(self.data, pinv(self.H))
INQa = base.matrix(-np.eye(self._num_samples))
INQb = base.matrix(0.0, (self._num_samples, 1))
EQa = base.matrix(1.0, (1, self._num_samples))
for i in range(self._num_bases):
update_single_w(i)
self.W = np.dot(self.beta, self.data.T).T
示例7: optimize_portfolio
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def optimize_portfolio(n, avg_ret, covs, r_min):
P = covs
# x = variable(n)
q = matrix(numpy.zeros((n, 1)), tc='d')
# inequality constraints Gx <= h
# captures the constraints (avg_ret'x >= r_min) and (x >= 0)
G = matrix(numpy.concatenate((
-numpy.transpose(numpy.array(avg_ret)),
-numpy.identity(n)), 0))
h = matrix(numpy.concatenate((
-numpy.ones((1,1))*r_min,
numpy.zeros((n,1))), 0))
# equality constraint Ax = b; captures the constraint sum(x) == 1
A = matrix(1.0, (1,n))
b = matrix(1.0)
sol = solvers.qp(P, q, G, h, A, b)
return sol
### setup the parameters
示例8: solve_qp
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def solve_qp(P, q, G, h,
A=None, b=None, sym_proj=False,
solver='cvxopt'):
if sym_proj:
P = .5 * (P + P.T)
cvxmat(P)
cvxmat(q)
cvxmat(G)
cvxmat(h)
args = [cvxmat(P), cvxmat(q), cvxmat(G), cvxmat(h)]
if A is not None:
args.extend([cvxmat(A), cvxmat(b)])
sol = qp(*args, solver=solver)
if not ('optimal' in sol['status']):
raise ValueError('QP optimum not found: %s' % sol['status'])
return np.array(sol['x']).reshape((P.shape[1],))
示例9: margin
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def margin(K,Y):
"""evaluate the margin in a classification problem of examples in feature space.
If the classes are not linearly separable in feature space, then the
margin obtained is 0.
Note that it works only for binary tasks.
Parameters
----------
K : (n,n) ndarray,
the kernel that represents the data.
Y : (n) array_like,
the labels vector.
"""
K, Y = validation.check_K_Y(K, Y, binary=True)
n = Y.size()[0]
Y = [1 if y==Y[0] else -1 for y in Y]
YY = spdiag(Y)
P = 2*(YY*matrix(K.numpy())*YY)
p = matrix([0.0]*n)
G = -spdiag([1.0]*n)
h = matrix([0.0]*n)
A = matrix([[1.0 if Y[i]==+1 else 0 for i in range(n)],
[1.0 if Y[j]==-1 else 0 for j in range(n)]]).T
b = matrix([[1.0],[1.0]],(2,1))
solvers.options['show_progress']=False
sol = solvers.qp(P,p,G,h,A,b)
return sol['primal objective']**.5
示例10: opt_radius
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def opt_radius(K, init_sol=None):
n = K.shape[0]
K = matrix(K.numpy())
P = 2 * K
p = -matrix([K[i,i] for i in range(n)])
G = -spdiag([1.0] * n)
h = matrix([0.0] * n)
A = matrix([1.0] * n).T
b = matrix([1.0])
solvers.options['show_progress']=False
sol = solvers.qp(P,p,G,h,A,b,initvals=init_sol)
radius2 = (-p.T * sol['x'])[0] - (sol['x'].T * K * sol['x'])[0]
return sol, radius2
示例11: opt_margin
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def opt_margin(K, YY, init_sol=None):
'''optimized margin evaluation'''
n = K.shape[0]
P = 2 * (YY * matrix(K.numpy()) * YY)
p = matrix([0.0]*n)
G = -spdiag([1.0]*n)
h = matrix([0.0]*n)
A = matrix([[1.0 if YY[i,i]==+1 else 0 for i in range(n)],
[1.0 if YY[j,j]==-1 else 0 for j in range(n)]]).T
b = matrix([[1.0],[1.0]],(2,1))
solvers.options['show_progress']=False
sol = solvers.qp(P,p,G,h,A,b,initvals=init_sol)
margin2 = sol['primal objective']
return sol, margin2
示例12: opt_margin
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def opt_margin(K,YY,init_sol=None):
'''optimized margin evaluation'''
n = K.shape[0]
P = 2 * (YY * matrix(K) * YY)
p = matrix([0.0]*n)
G = -spdiag([1.0]*n)
h = matrix([0.0]*n)
A = matrix([[1.0 if YY[i,i]==+1 else 0 for i in range(n)],
[1.0 if YY[j,j]==-1 else 0 for j in range(n)]]).T
b = matrix([[1.0],[1.0]],(2,1))
solvers.options['show_progress']=False
sol = solvers.qp(P,p,G,h,A,b,initvals=init_sol)
margin2 = sol['primal objective']
return margin2, sol['x'], sol
示例13: _fit
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def _fit(self,X,Y):
self.X = X
values = np.unique(Y)
Y = [1 if l==values[1] else -1 for l in Y]
self.Y = Y
npos = len([1.0 for l in Y if l == 1])
nneg = len([1.0 for l in Y if l == -1])
gamma_unif = matrix([1.0/npos if l == 1 else 1.0/nneg for l in Y])
YY = matrix(np.diag(list(matrix(Y))))
Kf = self.__kernel_definition__()
ker_matrix = matrix(Kf(X,X).astype(np.double))
#KLL = (1.0 / (gamma_unif.T * YY * ker_matrix * YY * gamma_unif)[0])*(1.0-self.lam)*YY*ker_matrix*YY
KLL = (1.0-self.lam)*YY*ker_matrix*YY
LID = matrix(np.diag([self.lam * (npos * nneg / (npos+nneg))]*len(Y)))
Q = 2*(KLL+LID)
p = matrix([0.0]*len(Y))
G = -matrix(np.diag([1.0]*len(Y)))
h = matrix([0.0]*len(Y),(len(Y),1))
A = matrix([[1.0 if lab==+1 else 0 for lab in Y],[1.0 if lab2==-1 else 0 for lab2 in Y]]).T
b = matrix([[1.0],[1.0]],(2,1))
solvers.options['show_progress'] = False#True
solvers.options['maxiters'] = self.max_iter
sol = solvers.qp(Q,p,G,h,A,b)
self.gamma = sol['x']
if self.verbose:
print ('[KOMD]')
print ('optimization finished, #iter = %d' % sol['iterations'])
print ('status of the solution: %s' % sol['status'])
print ('objval: %.5f' % sol['primal objective'])
bias = 0.5 * self.gamma.T * ker_matrix * YY * self.gamma
self.bias = bias
self.is_fitted = True
self.ker_matrix = ker_matrix
return self
示例14: fit_nnl2reg
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def fit_nnl2reg(self):
try:
from cvxopt import matrix, solvers
except ImportError:
raise ImportError("To infer titer models, you need a working installation of cvxopt")
n_params = self.design_matrix.shape[1]
P = matrix(np.dot(self.design_matrix.T, self.design_matrix) + self.lam_drop*np.eye(n_params))
q = matrix( -np.dot( self.titer_dist, self.design_matrix))
h = matrix(np.zeros(n_params)) # Gw <=h
G = matrix(-np.eye(n_params))
W = solvers.qp(P,q,G,h)
return np.array([x for x in W['x']])
示例15: projection_in_norm
# 需要导入模块: from cvxopt import solvers [as 别名]
# 或者: from cvxopt.solvers import qp [as 别名]
def projection_in_norm(self, x, M):
""" Projection of x to simplex indiced by matrix M. Uses quadratic programming.
"""
m = M.shape[0]
P = matrix(2*M)
q = matrix(-2 * M * x)
G = matrix(-np.eye(m))
h = matrix(np.zeros((m,1)))
A = matrix(np.ones((1,m)))
b = matrix(1.)
sol = solvers.qp(P, q, G, h, A, b)
return np.squeeze(sol['x'])