本文整理汇总了Python中cv2.undistortPoints方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.undistortPoints方法的具体用法?Python cv2.undistortPoints怎么用?Python cv2.undistortPoints使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.undistortPoints方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: undistort_image_bounds
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort_image_bounds(self):
uv_bounds = np.array([[self.u_min, self.v_min],
[self.u_min, self.v_max],
[self.u_max, self.v_min],
[self.u_max, self.v_max]], dtype=np.float32).reshape(4,2)
#print('uv_bounds: ', uv_bounds)
if self.is_distorted:
uv_bounds_undistorted = cv2.undistortPoints(np.expand_dims(uv_bounds, axis=1), self.K, self.D, None, self.K)
uv_bounds_undistorted = uv_bounds_undistorted.ravel().reshape(uv_bounds_undistorted.shape[0], 2)
else:
uv_bounds_undistorted = uv_bounds
#print('uv_bounds_undistorted: ', uv_bounds_undistorted)
self.u_min = min(uv_bounds_undistorted[0][0],uv_bounds_undistorted[1][0])
self.u_max = max(uv_bounds_undistorted[2][0],uv_bounds_undistorted[3][0])
self.v_min = min(uv_bounds_undistorted[0][1],uv_bounds_undistorted[2][1])
self.v_max = max(uv_bounds_undistorted[1][1],uv_bounds_undistorted[3][1])
# print('camera u_min: ', self.u_min)
# print('camera u_max: ', self.u_max)
# print('camera v_min: ', self.v_min)
# print('camera v_max: ', self.v_max)
示例2: undistort_uvlist
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort_uvlist(self, image, uv_orig):
if len(uv_orig) == 0:
return []
# camera parameters
dist_coeffs = np.array(camera.get_dist_coeffs())
K = camera.get_K()
# assemble the points in the proper format
uv_raw = np.zeros((len(uv_orig),1,2), dtype=np.float32)
for i, kp in enumerate(uv_orig):
uv_raw[i][0] = (kp[0], kp[1])
# do the actual undistort
uv_new = cv2.undistortPoints(uv_raw, K, dist_coeffs, P=K)
# return the results in an easier format
result = []
for i, uv in enumerate(uv_new):
result.append(uv_new[i][0])
#print " orig = %s undistort = %s" % (uv_raw[i][0], uv_new[i][0]
return result
# for each feature in each image, compute the undistorted pixel
# location (from the calibrated distortion parameters)
示例3: estimate_relative_pose_from_correspondence
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def estimate_relative_pose_from_correspondence(pts1, pts2, K1, K2):
f_avg = (K1[0, 0] + K2[0, 0]) / 2
pts1, pts2 = np.ascontiguousarray(pts1, np.float32), np.ascontiguousarray(pts2, np.float32)
pts_l_norm = cv2.undistortPoints(np.expand_dims(pts1, axis=1), cameraMatrix=K1, distCoeffs=None)
pts_r_norm = cv2.undistortPoints(np.expand_dims(pts2, axis=1), cameraMatrix=K2, distCoeffs=None)
E, mask = cv2.findEssentialMat(pts_l_norm, pts_r_norm, focal=1.0, pp=(0., 0.),
method=cv2.RANSAC, prob=0.999, threshold=3.0 / f_avg)
points, R_est, t_est, mask_pose = cv2.recoverPose(E, pts_l_norm, pts_r_norm)
return mask[:,0].astype(np.bool), R_est, t_est
示例4: undistort_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort_points(self, uvs):
if self.is_distorted:
#uvs_undistorted = cv2.undistortPoints(np.expand_dims(uvs, axis=1), self.K, self.D, None, self.K) # => Error: while undistorting the points error: (-215:Assertion failed) src.isContinuous()
uvs_contiguous = np.ascontiguousarray(uvs[:, :2]).reshape((uvs.shape[0], 1, 2))
uvs_undistorted = cv2.undistortPoints(uvs_contiguous, self.K, self.D, None, self.K)
return uvs_undistorted.ravel().reshape(uvs_undistorted.shape[0], 2)
else:
return uvs
# update image bounds
示例5: check_calibration
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def check_calibration(self, calibration):
"""
Check calibration quality by computing average reprojection error.
First, undistort detected points and compute epilines for each side.
Then compute the error between the computed epipolar lines and the
position of the points detected on the other side for each point and
return the average error.
"""
sides = "left", "right"
which_image = {sides[0]: 1, sides[1]: 2}
undistorted, lines = {}, {}
for side in sides:
undistorted[side] = cv2.undistortPoints(
np.concatenate(self.image_points[side]).reshape(-1,
1, 2),
calibration.cam_mats[side],
calibration.dist_coefs[side],
P=calibration.cam_mats[side])
lines[side] = cv2.computeCorrespondEpilines(undistorted[side],
which_image[side],
calibration.f_mat)
total_error = 0
this_side, other_side = sides
for side in sides:
for i in range(len(undistorted[side])):
total_error += abs(undistorted[this_side][i][0][0] *
lines[other_side][i][0][0] +
undistorted[this_side][i][0][1] *
lines[other_side][i][0][1] +
lines[other_side][i][0][2])
other_side, this_side = sides
total_points = self.image_count * len(self.object_points)
return total_error / total_points
示例6: undistort
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort(self, distorted_image_coords, Kundistortion=None):
"""
Remove distortion from image coordinates.
:param distorted_image_coords: real image coordinates
:type distorted_image_coords: numpy.ndarray, shape=(2, n)
:param Kundistortion: camera matrix for undistorted view, None for self.K
:type Kundistortion: array-like, shape=(3, 3)
:return: linear image coordinates
:rtype: numpy.ndarray, shape=(2, n)
"""
assert distorted_image_coords.shape[0] == 2
assert distorted_image_coords.ndim == 2
if Kundistortion is None:
Kundistortion = self.K
if self.calibration_type == 'division':
A = self.get_A(Kundistortion)
Ainv = np.linalg.inv(A)
undistorted_image_coords = p2e(A.dot(e2p(self._undistort_division(p2e(Ainv.dot(e2p(distorted_image_coords)))))))
elif self.calibration_type == 'opencv':
undistorted_image_coords = cv2.undistortPoints(distorted_image_coords.T.reshape((1, -1, 2)),
self.K, self.opencv_dist_coeff,
P=Kundistortion).reshape(-1, 2).T
elif self.calibration_type == 'opencv_fisheye':
undistorted_image_coords = cv2.fisheye.undistortPoints(distorted_image_coords.T.reshape((1, -1, 2)),
self.K, self.opencv_dist_coeff,
P=Kundistortion).reshape(-1, 2).T
else:
warn('undistortion not implemented')
undistorted_image_coords = distorted_image_coords
assert undistorted_image_coords.shape[0] == 2
assert undistorted_image_coords.ndim == 2
return undistorted_image_coords
示例7: localize
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def localize(self, query_info, query_item, global_transf, local_transf):
global_desc = global_transf(query_item.global_desc[np.newaxis])[0]
local_desc = local_transf(query_item.local_desc)
keypoints = cv2.undistortPoints(
query_item.keypoints[np.newaxis], query_info.K,
np.array([query_info.dist, 0, 0, 0]))[0]
logging.info('Localizing image %s', query_info.name)
ret = self.cpp_backend.localize(
global_desc.astype(np.float32),
keypoints.astype(np.float32).T.copy(),
local_desc.astype(np.float32).T.copy())
(success, num_components_total, num_components_tested,
last_component_size, num_db_landmarks, num_matches,
num_inliers, num_iters, global_ms, covis_ms, local_ms, pnp_ms) = ret
result = LocResult(success, num_inliers, 0, np.eye(4))
stats = {
'success': success,
'num_components_total': num_components_total,
'num_components_tested': num_components_tested,
'last_component_size': last_component_size,
'num_db_landmarks': num_db_landmarks,
'num_matches': num_matches,
'num_inliers': num_inliers,
'num_ransac_iters': num_iters,
'timings': {
'global': global_ms,
'covis': covis_ms,
'local': local_ms,
'pnp': pnp_ms,
}
}
return (result, stats)
示例8: undistort
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort(uv_orig):
# convert the point into the proper format for opencv
uv_raw = np.zeros((1,1,2), dtype=np.float32)
uv_raw[0][0] = (uv_orig[0], uv_orig[1])
# do the actual undistort
uv_new = cv2.undistortPoints(uv_raw, K, dist_coeffs, P=K)
# print(uv_orig, type(uv_new), uv_new)
return uv_new[0][0]
# cull points from the per-image pool that project outside the grid boundaries
示例9: undistort
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort(uv_orig):
# convert the point into the proper format for opencv
uv_raw = np.zeros((1,1,2), dtype=np.float32)
uv_raw[0][0] = (uv_orig[0], uv_orig[1])
# do the actual undistort
uv_new = cv2.undistortPoints(uv_raw, K, dist_coeffs, P=K)
# print(uv_orig, type(uv_new), uv_new)
return uv_new[0][0]
示例10: undistort_features
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort_features(self):
if not len(self.kp_list):
return
K = self.cam.get_K(optimized)
uv_raw = np.zeros((len(image.kp_list),1,2), dtype=np.float32)
for i, kp in enumerate(image.kp_list):
uv_raw[i][0] = (kp.pt[0], kp.pt[1])
dist_coeffs = self.cam.get_dist_coeffs(optimized)
uv_new = cv2.undistortPoints(uv_raw, K, np.array(dist_coeffs), P=K)
image.uv_list = []
for i, uv in enumerate(uv_new):
image.uv_list.append(uv_new[i][0])
# print(" orig = %s undistort = %s" % (uv_raw[i][0], uv_new[i]
示例11: undistort_image_keypoints
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def undistort_image_keypoints(self, image, optimized=False):
if len(image.kp_list) == 0:
return
K = camera.get_K(optimized)
uv_raw = np.zeros((len(image.kp_list),1,2), dtype=np.float32)
for i, kp in enumerate(image.kp_list):
uv_raw[i][0] = (kp.pt[0], kp.pt[1])
dist_coeffs = camera.get_dist_coeffs(optimized)
uv_new = cv2.undistortPoints(uv_raw, K, np.array(dist_coeffs), P=K)
image.uv_list = []
for i, uv in enumerate(uv_new):
image.uv_list.append(uv_new[i][0])
# print(" orig = %s undistort = %s" % (uv_raw[i][0], uv_new[i]
# for each feature in each image, compute the undistorted pixel
# location (from the calibrated distortion parameters)
示例12: cpmtriangulate
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import undistortPoints [as 别名]
def cpmtriangulate(pts):
pts = pts[:,::-1,:]
c1 = Camera(Camera.buildK(
#[564.5793378468188, 562.7507396707426, 807.514870534443, 638.3417715516073]),
[517.2287393382929, 525.0704075144106, 774.5928420208769, 591.6267497011125]),
np.eye(3),
np.zeros((3,1)))
P2 = np.array([
#[0.9987049032311739, 0.005161677353747297, -0.05061495183159303, 0.0975936934184045],
#[-0.004173863762698966, 0.9997991391796881, 0.01960255485522677, 0.00181642123998563],
#[0.05070596733431972, -0.01936590773647232, 0.9985258466831194, 0.006270242291420671]
[0.9997257921076083, -0.002649760120974218, -0.023266270996836397, 0.09259191413077857],
[0.0027696869905852674, 0.9999830374718406, 0.005123826943546446, -0.0014153393536146166],
[0.02325229942975788, -0.005186862237858692, 0.9997161732368524, -0.0005078842007711909]
])
c2 = Camera(Camera.buildK(
[521.1484829793496, 526.8842673949462, 789.4993718170895, 576.4476020205435]),
P2[:,:3],
P2[:,3])
#c1, c2 = read_temple_camera()
npts = pts.shape[0]
pts_coord = [[], []]
for p in pts:
p1, p2 = p[0], p[1]
p1, p2 = coordinate_recover(p1), coordinate_recover(p2)
pts_coord[0].append(p1)
pts_coord[1].append(p2)
pts1 = np.asarray(pts_coord[0]).reshape((npts,1,2)).astype('float32')
pts2 = np.asarray(pts_coord[1]).reshape((npts,1,2)).astype('float32')
if True: # do undistort:
pts1 = cv2.undistortPoints(pts1, c1.K,
np.array([-0.23108204 ,0.03321534, 0.00227184 ,0.00240575]))
#pts1 = cv2.undistortPoints(pts1, c1.K,
#np.array([0,0,0,0]))
pts1 = pts1.reshape((npts,2))
pts2 = cv2.undistortPoints(pts2, c2.K,
np.array([-0.23146758 ,0.03342091 ,0.00133691 ,0.00034652]))
#pts2 = cv2.undistortPoints(pts2, c2.K,
#np.array([0,0,0,0]))
pts2 = pts2.reshape((npts,2))
c1 = Camera(np.eye(3),c1.R,c1.t)
c2 = Camera(np.eye(3),c2.R,c2.t)
else:
pts1 = pts1[:,0,:]
pts2 = pts2[:,0,:]
pts3d = []
for p1, p2 in zip(pts1, pts2):
p3d = triangulate(c1, c2, p1, p2)
pts3d.append(p3d)
pts3d = np.array(pts3d)
return pts3d