本文整理汇总了Python中cv2.triangulatePoints方法的典型用法代码示例。如果您正苦于以下问题:Python cv2.triangulatePoints方法的具体用法?Python cv2.triangulatePoints怎么用?Python cv2.triangulatePoints使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv2
的用法示例。
在下文中一共展示了cv2.triangulatePoints方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: triangulation
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def triangulation(kp1, kp2, T_1w, T_2w):
"""Triangulation to get 3D points
Args:
kp1 (Nx2): keypoint in view 1 (normalized)
kp2 (Nx2): keypoints in view 2 (normalized)
T_1w (4x4): pose of view 1 w.r.t i.e. T_1w (from w to 1)
T_2w (4x4): pose of view 2 w.r.t world, i.e. T_2w (from w to 2)
Returns:
X (3xN): 3D coordinates of the keypoints w.r.t world coordinate
X1 (3xN): 3D coordinates of the keypoints w.r.t view1 coordinate
X2 (3xN): 3D coordinates of the keypoints w.r.t view2 coordinate
"""
kp1_3D = np.ones((3, kp1.shape[0]))
kp2_3D = np.ones((3, kp2.shape[0]))
kp1_3D[0], kp1_3D[1] = kp1[:, 0].copy(), kp1[:, 1].copy()
kp2_3D[0], kp2_3D[1] = kp2[:, 0].copy(), kp2[:, 1].copy()
X = cv2.triangulatePoints(T_1w[:3], T_2w[:3], kp1_3D[:2], kp2_3D[:2])
X /= X[3]
X1 = T_1w[:3] @ X
X2 = T_2w[:3] @ X
return X[:3], X1, X2
示例2: triangulate_normalized_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def triangulate_normalized_points(pose_1w, pose_2w, kpn_1, kpn_2):
# P1w = np.dot(K1, M1w) # K1*[R1w, t1w]
# P2w = np.dot(K2, M2w) # K2*[R2w, t2w]
# since we are working with normalized coordinates x_hat = Kinv*x, one has
P1w = pose_1w[:3,:] # [R1w, t1w]
P2w = pose_2w[:3,:] # [R2w, t2w]
point_4d_hom = cv2.triangulatePoints(P1w, P2w, kpn_1.T, kpn_2.T)
good_pts_mask = np.where(point_4d_hom[3]!= 0)[0]
point_4d = point_4d_hom / point_4d_hom[3]
if __debug__:
if False:
point_reproj = P1w @ point_4d;
point_reproj = point_reproj / point_reproj[2] - add_ones(kpn_1).T
err = np.sum(point_reproj**2)
print('reproj err: ', err)
#return point_4d.T
points_3d = point_4d[:3, :].T
return points_3d, good_pts_mask
# compute the fundamental mat F12 and the infinite homography H21 [Hartley Zisserman pag 339]
示例3: triangulate_points
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def triangulate_points(self, kps_left, desps_left, kps_right, desps_right):
matches = self.feature.row_match(
kps_left, desps_left, kps_right, desps_right)
assert len(matches) > 0
px_left = np.array([kps_left[m.queryIdx].pt for m in matches])
px_right = np.array([kps_right[m.trainIdx].pt for m in matches])
points = cv2.triangulatePoints(
self.left.projection_matrix,
self.right.projection_matrix,
px_left.transpose(),
px_right.transpose()
).transpose() # shape: (N, 4)
points = points[:, :3] / points[:, 3:]
can_view = np.logical_and(
self.left.can_view(points),
self.right.can_view(points))
mappoints = []
matchs = []
for i, point in enumerate(points):
if not can_view[i]:
continue
normal = point - self.position
normal = normal / np.linalg.norm(normal)
color = self.left.get_color(px_left[i])
mappoint = MapPoint(
point, normal, desps_left[matches[i].queryIdx], color)
mappoints.append(mappoint)
matchs.append((matches[i].queryIdx, matches[i].trainIdx))
return mappoints, matchs
示例4: triangulatePoints
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def triangulatePoints( P1, P2, x1, x2 ):
X = cv2.triangulatePoints( P1[:3], P2[:3], x1[:2], x2[:2] )
return X/X[3] # Remember to divide out the 4th row. Make it homogeneous
示例5: get_body2ned
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def get_body2ned(self, opt=False):
ned, ypr, quat = self.get_camera_pose(opt)
return transformations.quaternion_matrix(np.array(quat))[:3,:3]
# compute rvec and tvec (used to build the camera projection
# matrix for things like cv2.triangulatePoints) from camera pose
示例6: compute_triangulation_calibration_images
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def compute_triangulation_calibration_images(
stereo_matrix, projectedPoints1, projectedPoints2, path_undistort, cfg_3d, plot=True
):
"""
Performs triangulation of the calibration images.
"""
from mpl_toolkits.mplot3d import Axes3D
triangulate = []
P1 = stereo_matrix["P1"]
P2 = stereo_matrix["P2"]
cmap = cfg_3d["colormap"]
colormap = plt.get_cmap(cmap)
markerSize = cfg_3d["dotsize"]
markerType = cfg_3d["markerType"]
for i in range(projectedPoints1.shape[0]):
X_l = triangulatePoints(P1, P2, projectedPoints1[i], projectedPoints2[i])
triangulate.append(X_l)
triangulate = np.asanyarray(triangulate)
# Plotting
if plot == True:
col = colormap(np.linspace(0, 1, triangulate.shape[0]))
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
for i in range(triangulate.shape[0]):
xs = triangulate[i, 0, :]
ys = triangulate[i, 1, :]
zs = triangulate[i, 2, :]
ax.scatter(xs, ys, zs, c=col[i], marker=markerType, s=markerSize)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.savefig(os.path.join(str(path_undistort), "checkerboard_3d.png"))
return triangulate
示例7: triangulatePoints
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def triangulatePoints(P1, P2, x1, x2):
X = cv2.triangulatePoints(P1[:3], P2[:3], x1, x2)
return X / X[3]
示例8: triangulate_features
# 需要导入模块: import cv2 [as 别名]
# 或者: from cv2 import triangulatePoints [as 别名]
def triangulate_features(i1, i2):
# quick sanity checks
if i1 == i2:
return None
if not i2.name in i1.match_list:
return None
if len(i1.match_list[i2.name]) == 0:
return None
if not i1.kp_list or not len(i1.kp_list):
i1.load_features()
if not i2.kp_list or not len(i2.kp_list):
i2.load_features()
# camera calibration
K = camera.get_K()
IK = np.linalg.inv(K)
# get poses
rvec1, tvec1 = i1.get_proj()
rvec2, tvec2 = i2.get_proj()
R1, jac = cv2.Rodrigues(rvec1)
PROJ1 = np.concatenate((R1, tvec1), axis=1)
R2, jac = cv2.Rodrigues(rvec2)
PROJ2 = np.concatenate((R2, tvec2), axis=1)
# setup data structures for cv2 call
uv1 = []; uv2 = []; indices = []
for pair in i1.match_list[i2.name]:
p1 = i1.kp_list[ pair[0] ].pt
p2 = i2.kp_list[ pair[1] ].pt
uv1.append( [p1[0], p1[1], 1.0] )
uv2.append( [p2[0], p2[1], 1.0] )
pts1 = IK.dot(np.array(uv1).T)
pts2 = IK.dot(np.array(uv2).T)
points = cv2.triangulatePoints(PROJ1, PROJ2, pts1[:2], pts2[:2])
points /= points[3]
return points
# find (forward) affine transformation between feature pairs